Algebra 1 : How to find slope of a line

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3751 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (1, 1) and \displaystyle (1, 7)

Possible Answers:

\displaystyle 0

\displaystyle 8

\displaystyle -6

\displaystyle \text{Undefined}

Correct answer:

\displaystyle \text{Undefined}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{7-1}{1-1}

Simplify.

\displaystyle \text{Slope}=\frac{6}{0}

 Since you cannot divide by \displaystyle 0, the slope of this vertical line is undefined.

Example Question #3752 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (2, 0) and \displaystyle (5, 27)

Possible Answers:

\displaystyle \frac{29}{5}

\displaystyle \frac{1}{9}

\displaystyle 9

\displaystyle -9

Correct answer:

\displaystyle 9

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{27-0}{5-2}

Simplify.

\displaystyle \text{Slope}=\frac{27}{3}

Reduce.

\displaystyle \text{Slope}=9

Example Question #3753 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (-6, -8) and \displaystyle (5, 25)

Possible Answers:

\displaystyle \frac{17}{11}

\displaystyle -\frac{13}{31}

\displaystyle \frac{11}{33}

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{25-(-8)}{5-(-6)}

Remember that subtracting a negative number is the same as adding a positive number.

\displaystyle \text{Slope}=\frac{25+8}{5+6}

Simplify.

\displaystyle \text{Slope}=\frac{33}{11}

Reduce.

\displaystyle \text{Slope}=3

Example Question #3754 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (-17, 21) and \displaystyle (-5, -3)

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle -2

\displaystyle 3

\displaystyle -\frac{3}{2}

Correct answer:

\displaystyle -2

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{-3-21}{-5-(-17)}

Remember that subtracting a negative number is the same as adding a positive number.

\displaystyle \text{Slope}=\frac{-3-21}{-5+17}

Simplify.

\displaystyle \text{Slope}=\frac{-24}{12}

Reduce.

\displaystyle \text{Slope}=-2

Example Question #3755 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (4, 10) and \displaystyle (-4, -10)

Possible Answers:

\displaystyle \frac{2}{5}

\displaystyle -1

\displaystyle 6

\displaystyle \frac{5}{2}

Correct answer:

\displaystyle \frac{5}{2}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{-10-10}{-4-4}

Simplify.

\displaystyle \text{Slope}=\frac{-20}{-8}

Reduce.

\displaystyle \text{Slope}=\frac{5}{2}

Example Question #3756 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (8, 0) and \displaystyle (8, 7)

Possible Answers:

\displaystyle 0

\displaystyle -7

\displaystyle \text{Undefined}

\displaystyle \frac{7}{16}

Correct answer:

\displaystyle \text{Undefined}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{7-0}{8-8}

Simplify.

\displaystyle \text{Slope}=\frac{7}{0}

Since you can't divide by \displaystyle 0, the slope of this vertical line is undefined.

Example Question #3757 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (0. 9) and \displaystyle (12, 9)

Possible Answers:

\displaystyle 0

\displaystyle 6

\displaystyle \text{Undefined}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle 0

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{9-9}{12-0}

Simplify.

\displaystyle \text{Slope}=\frac{0}{12}

Reduce.

\displaystyle \text{Slope}=0

Example Question #3758 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (17, 1) and \displaystyle (20, 2)

Possible Answers:

\displaystyle 3

\displaystyle -\frac{2}{3}

\displaystyle 1

\displaystyle \frac{1}{3}

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{2-1}{20-17}

Simplify.

\displaystyle \text{Slope}=\frac{1}{3}

 

Example Question #3759 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (7, 8) and \displaystyle (9, 10)

Possible Answers:

\displaystyle -1

\displaystyle \frac{1}{2}

\displaystyle 2

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{10-8}{9-7}

Simplify.

\displaystyle \text{Slope}=\frac{2}{2}

Reduce.

\displaystyle \text{Slope}=1

Example Question #3761 : Algebra 1

Find the slope of the line that passes through the following points: 

\displaystyle (11, 9) and \displaystyle (5, 6)

Possible Answers:

\displaystyle \frac{16}{5}

\displaystyle \frac{1}{2}

\displaystyle -2

\displaystyle \frac{15}{16}

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Remember that points are written in the following format:

\displaystyle (x,y)

Substitute using the given points:

\displaystyle \text{Slope}=\frac{6-9}{5-11}

Simplify.

\displaystyle \text{Slope}=\frac{-3}{-6}

Reduce.

\displaystyle \text{Slope}=\frac{1}{2}

Learning Tools by Varsity Tutors