Algebra 1 : Algebra 1

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #129 : Variables

Simplify the following:

\displaystyle a(a + b) - b(a+b)

Possible Answers:

\displaystyle 2a^2 -2b^2

\displaystyle a^2 + 2ab-b^2

\displaystyle a^2 -b^2

\displaystyle a^2 +ab -b^2

\displaystyle 2a^2 -b^2

Correct answer:

\displaystyle a^2 -b^2

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle a(a + b) - b(a+b)

 

\displaystyle a^2 + ab - ab - b^2

\displaystyle a^2 -b^2

Example Question #121 : Polynomials

Simplify the following:

\displaystyle a(x + y) - a(x-y)

Possible Answers:

\displaystyle 2ay

\displaystyle -2ay

\displaystyle 2ax

\displaystyle ax + ay

\displaystyle -2ax

Correct answer:

\displaystyle 2ay

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle a(x + y) - a(x-y)

 

\displaystyle ax + ay - ax + ay

\displaystyle 2ay

Example Question #131 : Variables

Simplify the following expression:

\displaystyle (9x^8+4x^4-5x+4)-(-x^8+5x^5+4x^4+15x+3)

Possible Answers:

\displaystyle 10x^8-5x^5-8x^4-20x+1

\displaystyle 10x^8-5x^5-20x+1

\displaystyle 8x^8-5x^5-20x+1

\displaystyle 10x^8-20x+1

Correct answer:

\displaystyle 10x^8-5x^5-20x+1

Explanation:

Simplify the following expression:

\displaystyle (9x^8+4x^4-5x+4)-(-x^8+5x^5+4x^4+15x+3)

To simplify the expression, we first need to distribute the negative sign.

\displaystyle (9x^8+4x^4-5x+4)+x^8-5x^5-4x^4-15x-3)

Next, remove the other parentheses, and rearrange the terms to get similar exponents next to eachother:

\displaystyle 9x^8+x^8-5x^5+4x^4-4x^4-5x-15x+4-3

Finally, combine each set of like terms and you will have your answer:

\displaystyle 10x^8-5x^5-20x+1

 

Example Question #21 : How To Subtract Polynomials

Simplify the following:

\displaystyle (2x^2 + xy) - 3(x^2 + 2xy)

Possible Answers:

\displaystyle -x^2 +5xy

\displaystyle x^2 + 5xy

\displaystyle x^2 -5xy

\displaystyle -x^2 -5xy

\displaystyle -x^3 -5xy

Correct answer:

\displaystyle -x^2 -5xy

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle -x^2 -5xy

Example Question #22 : How To Subtract Polynomials

Simplify the following:

\displaystyle 2(a+b) - 3(a + 2b)

Possible Answers:

\displaystyle -a-4b

\displaystyle -a-6b

\displaystyle a-4b

\displaystyle -a+4b

\displaystyle -2a-4b

Correct answer:

\displaystyle -a-4b

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle -a-4b

Example Question #23 : How To Subtract Polynomials

Simplify the following:

\displaystyle -2(x + y) - 4x + 3

Possible Answers:

\displaystyle 6x - 2y +3

\displaystyle -6x +2y +3

\displaystyle -6x - 2y -3

\displaystyle -6x - 2y +3

\displaystyle -4x - 2y +3

Correct answer:

\displaystyle -6x - 2y +3

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle -6x - 2y +3

Example Question #24 : How To Subtract Polynomials

Simplify the following:

\displaystyle 3(m + 2n) - 3(2m + n)

Possible Answers:

\displaystyle -6m + 6n

\displaystyle -3m + 3n

\displaystyle -3m - 3n

\displaystyle 3m + 3n

\displaystyle 3m - 3n

Correct answer:

\displaystyle -3m + 3n

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle -3m + 3n

Example Question #25 : How To Subtract Polynomials

Subtract the following polynomials:

\displaystyle (x^2+2x+3)-(x^2-7x+2)

Possible Answers:

\displaystyle 2x^2+9x+5

\displaystyle -2x^2+1

\displaystyle 9x+1

\displaystyle -5x+1

\displaystyle -5x+5

Correct answer:

\displaystyle 9x+1

Explanation:

Subtracting polynomials is very simple. Once we've changed the sign for the polynomial right of the subtraction sign, the problem becomes a matter of collecting like terms.

\displaystyle (x^2+2x+3)-(x^2-7x+2)

\displaystyle x^2+2x+3-x^2+7x-2

we've changed the sign of every term of the polynomial right of the subtraction sign because we've distributed the subtraction sign to get rid of the parentheses.

Now we can collect like terms to solve for the final answer. 

\displaystyle x^2{\color{Red} -x^2}+2x{\color{Red} +7x}+3{\color{Red} -2}

\displaystyle {\color{Blue} 9x+1}

Example Question #74 : Polynomial Operations

Find the difference of the following polynomials:

\displaystyle (x^2+x+9)-(x^3-x^2+4)

Possible Answers:

\displaystyle -x^3+13

\displaystyle -x^3+2x^2+x+5

\displaystyle -x^3+3x^2+5

\displaystyle -x^3+2x^2+5

\displaystyle -2x^2+5

Correct answer:

\displaystyle -x^3+2x^2+x+5

Explanation:

Subtracting polynomials is very simple. Once we've changed the sign for the polynomial right of the subtraction sign, the problem becomes a matter of collecting like terms.

\displaystyle (x^2+x+9)-(x^3-x^2+4)

\displaystyle x^2+x+9{\color{Red} -x^3+x^2-4}

we've changed the sign of every term of the polynomial right of the subtraction sign because we've distributed the subtraction sign to get rid of the parentheses.

Now we can collect like terms to solve for the final answer. 

\displaystyle {\color{Red} -x^3}+x^2{\color{Red} +x^2}+x+9{\color{Red} -4}

\displaystyle {\color{Blue} -x^3+2x^2+x+5}

Example Question #25 : How To Subtract Polynomials

Simplify the following:

\displaystyle -2(x + z) -m(x + z)

Possible Answers:

\displaystyle -2x +2z -mx -mz

\displaystyle -2x -2z +mx -mz

\displaystyle 2x -2z -mx -mz

\displaystyle -2x -2z -mx +mz

\displaystyle -2x -2z -mx -mz

Correct answer:

\displaystyle -2x -2z -mx -mz

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle -2x -2z -mx -mz

Learning Tools by Varsity Tutors