Algebra 1 : Algebra 1

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Polynomials

Simplify the following expression.

\displaystyle (3p^{2}+8)+(-p^{2}+5)

Possible Answers:

\displaystyle 2p^{2}+3

\displaystyle -3p^{2}-3

\displaystyle 2p^{2}+13

\displaystyle -3p^{2}+40

\displaystyle -3p^{2}+13

Correct answer:

\displaystyle 2p^{2}+13

Explanation:

\displaystyle (3p^{2}+8)+(-p^{2}+5)

This is not a FOIL problem, as we are adding rather than multiplying the terms in parenteses.

Add like terms to solve.

\displaystyle 3p^{2}-p^{2}=2p^{2}

\displaystyle 8+5=13

Combining these terms into an expression gives us our answer.

\displaystyle 2p^{2}+13

Example Question #4381 : Algebra 1

Simplify the expression.

\displaystyle 15x^{3}y^{2}+8x^{2}+3x^{3}y^{2}-4x^{2}

Possible Answers:

\displaystyle 22x^{6}y^{4}

None of the other answers are correct.

\displaystyle 22x^3y^{2}x^{2}

\displaystyle 18x^{3}y^{2}+4x^{2}

\displaystyle 18x^{3}y^{2}-4x^{2}

Correct answer:

\displaystyle 18x^{3}y^{2}+4x^{2}

Explanation:

When simplifying polynomials, only combine the variables with like terms.

\displaystyle 15x^{3}y^{2} can be added to \displaystyle 3x^{3}y^{2}, giving \displaystyle 18x^{3}y^{2}

\displaystyle 4x^{2} can be subtracted from \displaystyle 8x^{2} to give \displaystyle 4x^{2}.

Combine both of the terms into one expression to find the answer: \displaystyle 18x^{3}y^{2}+4x^{2}

Example Question #4382 : Algebra 1

Simplify the following expression.

\displaystyle (5c^{2}+5)+(-5c-5)

Possible Answers:

\displaystyle 5c^{2}-5c-25

\displaystyle 0

\displaystyle 5c^{2}-5c+10

\displaystyle 5c^{2}-5c

\displaystyle -10

Correct answer:

\displaystyle 5c^{2}-5c

Explanation:

\displaystyle (5c^{2}+5)+(-5c-5)

This is not a FOIL problem, as we are adding rather than multiplying the terms in parentheses.

Add like terms to solve.

\displaystyle 5c^{2} and \displaystyle -5c have no like terms and cannot be combined with anything.

5 and -5 can be combined however:

\displaystyle 5-5=0

This leaves us with \displaystyle 5c^{2}-5c.

Example Question #5 : How To Add Polynomials

Find the LCM of the following polynomials:

 

\displaystyle 2x\left ( x+1 \right ), \displaystyle 4x^{2}\left ( x^{2} -1\right ), \displaystyle 6\left ( x-1 \right )

Possible Answers:

\displaystyle 6x\left ( x+1 \right )\left ( x-1 \right )

\displaystyle 12\left ( x+1 \right )\left ( x-1 \right )

\displaystyle 12x^{2}\left ( x+1 \right )

\displaystyle 12x\left ( x-1 \right )

\displaystyle 12x^{2}\left ( x+1 \right )\left ( x-1 \right )

Correct answer:

\displaystyle 12x^{2}\left ( x+1 \right )\left ( x-1 \right )

Explanation:

LCM of \displaystyle 2,4,6=12

LCM of \displaystyle x, x^{2}=x^{2}

and since \displaystyle \left ( x^{2} -1 \right )= \left ( x+1 \right )\left ( x-1 \right )

The LCM  \displaystyle =12x^{2}\left ( x+1 \right )(x-1)

 

Example Question #4 : How To Add Polynomials

Add:

 

\displaystyle \frac{x}{x^{2}-2x-3} + \frac{1}{x^{2}-2x -3}

Possible Answers:

\displaystyle \frac{x+1}{x^{2}-2x-3}

\displaystyle \frac{1}{x-3}

\displaystyle \frac{x-3}{x+1}

\displaystyle 1

\displaystyle \frac{1}{x+1}

Correct answer:

\displaystyle \frac{1}{x-3}

Explanation:

First factor the denominators which gives us the following:

\displaystyle \frac{x}{\left ( x+1 \right )\left ( x-3 \right )} + \frac{1}{\left ( x+1 \right )\left ( x-3 \right )}

The two rational fractions have a common denominator hence they are like "like fractions".  Hence we get:

\displaystyle \frac{x+1}{\left ( x+1 \right )\left ( x-3 \right )}

Simplifying gives us

\displaystyle \frac{1}{x-3}

Example Question #12 : Simplifying Polynomials

Simplify

\displaystyle (2x^{2}-5) + (4x^{3}-3x^{2}+2x-1)

Possible Answers:

\displaystyle 5x^{2}+2x-6

\displaystyle 5x^{2}-6

\displaystyle 4x^{3}-x^{2}+2x-6

\displaystyle 4x^{3}-6x^{2}+1x-6

Correct answer:

\displaystyle 4x^{3}-x^{2}+2x-6

Explanation:

\displaystyle (2x^{2}-5) + (4x^{3}-3x^{2}+2x-1)

To simplify you combind like terms: 

\displaystyle (4x^{3}\boldsymbol{-3x^{2}+2x^{2}} +2x\boldsymbol{-1-5)}

Answer: 

\displaystyle 4x^{3}-x^{2}+2x-6

 

Example Question #21 : Polynomials

Combine: 

\displaystyle 3x^2y^3z+8m^4n^5-12x^2y^3z-2m^4n^5

Possible Answers:

\displaystyle 11x^2y^3z

\displaystyle 36x^2y^3z-16m^4n^5

\displaystyle -9x^2y^3z+6m^4n^5

\displaystyle 21m^4n^5x^2y^3z

Correct answer:

\displaystyle -9x^2y^3z+6m^4n^5

Explanation:

When combining polynomials, only combine like terms. With the like terms, combine the coefficients. Your answer is \displaystyle -9x^2y^3z+6m^4n^5

Example Question #24 : Intermediate Single Variable Algebra

Simplify this expression:\displaystyle (2y)(4x^2z^2 + 2a^2b^2) + (5x^2z^2y + 7a^2b^2y)

Possible Answers:

\displaystyle 11y + a^2 b^2 y+13 x^2 y z^2

Not able to simplify further

\displaystyle 11 a^2 b^2 y+13 x^2 y z^2

\displaystyle 11 a^2 b^2 y + 15 x^2 y z^2

\displaystyle a^2 b^2 y+13 x^2 y z^2

Correct answer:

\displaystyle 11 a^2 b^2 y+13 x^2 y z^2

Explanation:

Don't be scared by complex terms! First, we follow our order of operations and multiply the \displaystyle y into the first binomial. Then, we check to see if the variables are alike. If they match perfectly, we can add and subtract their coefficients just like we could if the expression was \displaystyle 3x + 3x.

Remember, a variable is always a variable, no matter how complex! In this problem, the terms match after we follow our order of operations! So we just add the coefficients of the matching terms and we get our answer:\displaystyle 11 a^2 b^2 y+13 x^2 y z^2

Example Question #4383 : Algebra 1

Simplify the following:  \displaystyle (x^3+2x-1)+(-2x^3-1)

Possible Answers:

\displaystyle -x^3+2x-2

\displaystyle x^3+2x-2

\displaystyle -x^3-2x-2

\displaystyle x^3+2x

\displaystyle -x^3+2x

Correct answer:

\displaystyle -x^3+2x-2

Explanation:

To solve \displaystyle (x^3+2x-1)+(-2x^3-1), identify all the like-terms and regroup to combine the values.

\displaystyle x^3-2x^3+2x-1-1= -x^3+2x-2

 

Example Question #12 : How To Add Polynomials

Evaluate the following expression:

\displaystyle (x^3 +3x^2 -2x-7)+(2x^3+3x+6)

Possible Answers:

\displaystyle 2x^3 +3x^2 -x -1

\displaystyle 3x^3 +6x^2 -2x -1

\displaystyle 4x^3 +3x^2 -x +1

\displaystyle 3x^3 +3x^2 +x -1

\displaystyle 3x^3 +3x -1

Correct answer:

\displaystyle 3x^3 +3x^2 +x -1

Explanation:

To add two polynomials together, you combine all like terms.

Combining the \displaystyle x^3 terms gives us \displaystyle 3x^3

Combining the \displaystyle x^2 terms gives us \displaystyle 3x^2, since there is only 1 of those terms in the expression it remains the same.

Combining the \displaystyle x terms gives us \displaystyle x

and finally combining theconstants gives us \displaystyle -1

summing all these together gives us 

\displaystyle 3x^3 +3x^2 +x -1

Learning Tools by Varsity Tutors