All Advanced Geometry Resources
Example Questions
Example Question #4 : How To Find The Length Of The Diagonal Of A Rhombus
is a rhombus. and . Find .
A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.
Thus, we can consider the right triangle to find the length of diagonal . From the problem, we are given that the sides are and . Because the diagonals bisect each other, we know:
Using the Pythagorean Theorem,
Example Question #5 : How To Find The Length Of The Diagonal Of A Rhombus
is a rhombus. and . Find .
A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.
Thus, we can consider the right triangle to find the length of diagonal . From the problem, we are given that the sides are and . Because the diagonals bisect each other, we know:
Using the Pythagorean Theorem,
Example Question #2 : How To Find The Length Of The Diagonal Of A Rhombus
is a rhombus. , , and . Find .
A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.
Thus, we can consider the right triangle and use the Pythagorean Theorem to solve for . From the problem:
Because the diagonals bisect each other, we know:
Using the Pythagorean Theorem,
Using the quadratic formula,
With this equation, we get two solutions:
Only the positive solution is valid for this problem.
Example Question #6 : How To Find The Length Of The Diagonal Of A Rhombus
is a rhombus. , , and . Find .
A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.
Thus, we can consider the right triangle and use the Pythagorean Theorem to solve for . From the problem:
Because the diagonals bisect each other, we know:
Using the Pythagorean Theorem,
Factoring,
and
The first solution is nonsensical for this problem.
Example Question #141 : Quadrilaterals
is a rhombus. and . Find the length of the sides.
A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.
Thus, we can consider the right triangle to find the length of side . From the problem, we are given and . Because the diagonals bisect each other, we know:
Using the Pythagorean Theorem,
Example Question #1 : Calculating The Length Of The Diagonal Of A Quadrilateral
Rhombus has area 56.
Which of the following could be true about the values of and ?
None of the other responses gives a correct answer.
The area of a rhombus is half the product of the lengths of its diagonals, which here are and . This means
Therefore, we need to test each of the choices to find the pair of diagonal lengths for which this holds.
:
Area:
Area:
Area:
Area:
is the correct choice.
Example Question #1 : Calculating The Length Of The Diagonal Of A Quadrilateral
Rhombus has perimeter 64; . What is the length of ?
The sides of a rhombus are all congruent; since the perimeter of Rhombus is 64, each side measures one fourth of this, or 16.
The referenced rhombus, along with diagonal , is below:
Since consecutive angles of a rhombus, as with any other parallelogram, are supplementary, and have measure ; bisects both into angles, making equilangular and, as a consequence, equilateral. Therefore, .
Example Question #2 : Calculating The Length Of The Diagonal Of A Quadrilateral
Rhombus has perimeter 48; . What is the length of ?
The referenced rhombus, along with diagonals and , is below.
The four sides of a rhombus have equal measure, so each side has measure one fourth of the perimeter of 48, which is 12.
Since consecutive angles of a rhombus, as with any other parallelogram, are suplementary, and have measure ; the diagonals bisect and into and angles, respectively, to form four 30-60-90 triangles. is one of them; by the 30-60-90 Triangle Theorem, ,
and
.
Since the diagonals of a rhombus bisect each other, .
Example Question #142 : Quadrilaterals
If the area of a rhombus is , and the length of one of its diagonals is , what must be the length of the other diagonal?
Write the formula for the area of a rhombus.
Plug in the given area and diagonal length. Solve for the other diagonal.
Example Question #141 : Quadrilaterals
is a rhombus. Find .
Using the Law of Sines,