Advanced Geometry : Rhombuses

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : How To Find The Length Of The Diagonal Of A Rhombus

Rhombus_1

 is a rhombus.  and . Find .

Possible Answers:

Correct answer:

Explanation:

A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.

Rhombus_2

Thus, we can consider the right triangle  to find the length of diagonal . From the problem, we are given that the sides are  and . Because the diagonals bisect each other, we know:

Using the Pythagorean Theorem,

Example Question #5 : How To Find The Length Of The Diagonal Of A Rhombus

Rhombus_1

 is a rhombus.  and . Find .

Possible Answers:

Correct answer:

Explanation:

A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.

Rhombus_2

Thus, we can consider the right triangle  to find the length of diagonal . From the problem, we are given that the sides are  and . Because the diagonals bisect each other, we know:

Using the Pythagorean Theorem,

Example Question #2 : How To Find The Length Of The Diagonal Of A Rhombus

 

 

Rhombus_1

 is a rhombus. , and . Find .

Possible Answers:

Correct answer:

Explanation:

A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.

Rhombus_2

Thus, we can consider the right triangle  and use the Pythagorean Theorem to solve for . From the problem:

Because the diagonals bisect each other, we know:

Using the Pythagorean Theorem,

Using the quadratic formula,

With this equation, we get two solutions:

Only the positive solution is valid for this problem.

Example Question #6 : How To Find The Length Of The Diagonal Of A Rhombus

Rhombus_1

 is a rhombus. , and . Find .

Possible Answers:

Correct answer:

Explanation:

A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.

Rhombus_2

Thus, we can consider the right triangle  and use the Pythagorean Theorem to solve for . From the problem:

Because the diagonals bisect each other, we know:

Using the Pythagorean Theorem,

Factoring,

 and 

The first solution is nonsensical for this problem. 

Example Question #141 : Quadrilaterals

Rhombus_1

 is a rhombus.  and . Find the length of the sides.

Possible Answers:

Correct answer:

Explanation:

A rhombus is a quadrilateral with four sides of equal length. Rhombuses have diagonals that bisect each other at right angles.

Rhombus_2

Thus, we can consider the right triangle  to find the length of side . From the problem, we are given  and . Because the diagonals bisect each other, we know:

Using the Pythagorean Theorem,

Example Question #1 : Calculating The Length Of The Diagonal Of A Quadrilateral

Rhombus  has area 56. 

Which of the following could be true about the values of  and ?

Possible Answers:

None of the other responses gives a correct answer.

Correct answer:

Explanation:

The area of a rhombus is half the product of the lengths of its diagonals, which here are  and . This means

Therefore, we need to test each of the choices to find the pair of diagonal lengths for which this holds.

 

:

Area: 

 

Area: 

 

Area: 

 

Area: 

 is the correct choice.

 

Example Question #1 : Calculating The Length Of The Diagonal Of A Quadrilateral

Rhombus  has perimeter 64; . What is the length of  ?

Possible Answers:

Correct answer:

Explanation:

The sides of a rhombus are all congruent; since the perimeter of Rhombus  is 64, each side measures one fourth of this, or 16. 

The referenced rhombus, along with diagonal , is below:

 

Rhombus

Since consecutive angles of a rhombus, as with any other parallelogram, are supplementary,  and  have measure ;  bisects both into  angles, making equilangular and, as a consequence, equilateral. Therefore, .

Example Question #2 : Calculating The Length Of The Diagonal Of A Quadrilateral

Rhombus  has perimeter 48; . What is the length of  ? 

Possible Answers:

Correct answer:

Explanation:

The referenced rhombus, along with diagonals  and , is below.

Rhombus

The four sides of a rhombus have equal measure, so each side has measure one fourth of the perimeter of 48, which is 12.

Since consecutive angles of a rhombus, as with any other parallelogram, are suplementary,  and  have measure ; the diagonals bisect  and  into  and  angles, respectively, to form four 30-60-90 triangles.  is one of them; by the 30-60-90 Triangle Theorem, ,

and

.

Since the diagonals of a rhombus bisect each other, .

Example Question #142 : Quadrilaterals

If the area of a rhombus is , and the length of one of its diagonals is , what must be the length of the other diagonal?

Possible Answers:

Correct answer:

Explanation:

Write the formula for the area of a rhombus.

Plug in the given area and diagonal length. Solve for the other diagonal.

Example Question #141 : Quadrilaterals

 is a rhombus.  Find .

Varsity3

Possible Answers:

 

 

 

Correct answer:

Explanation:

Using the Law of Sines,

Learning Tools by Varsity Tutors