All ACT Reading Resources
Example Questions
Example Question #591 : Act Reading
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
What can we infer from the author’s use of the underlined phrase, “sometimes, but not generally”?
None of the other answers
Hummingbirds can be found with both honey and insects in their stomachs, and this is what scientists observe most often.
Hummingbirds can be found with only honey in their stomachs quite often.
Hummingbirds can be found with insects in their stomachs, but this is rare.
Hummingbirds can be found with honey in their stomachs, but it is not common.
Hummingbirds can be found with honey in their stomachs, but it is not common.
The phrase “sometimes, but not generally” is found in the sentence, “Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey.” The phrase is specifically talking about the presence of honey in hummingbirds’ stomachs, not of insects, so we can eliminate the answer choice “Hummingbirds can be found with insects in their stomachs, but this is rare.” Since “not generally” means “not most of the time,” the author is saying “sometimes, but not most of the time, hummingbirds have honey in their stomachs.” This is only accurately stated by the answer choice “Hummingbirds can be found with honey in their stomachs, but it is not common.” The answer choices “Hummingbirds can be found with both honey and insects in their stomachs, and this is what scientists observe most often” and “Hummingbirds can be found with only honey in their stomachs quite often” are incorrect because neither suggests that finding a hummingbird with honey in its stomach is rare, which is what the author is saying.
Example Question #592 : Act Reading
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
The meaning of the underlined phrase “on the wing” is __________.
without preparation or preplanning
located on a feather on a bird’s wing
having been thrown
vacationing
in flight
in flight
The phrase “on the wing” is used in the following sentence in the passage:
“[Other hummingbirds] come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose.”
“On the wing” may initially appear to mean just what it says, “located on a feather on a bird’s wing,’ but considering the way it is used in the passage, this doesn’t make any sense. The sentence describes the hummingbirds “darting about,” and in order for them to do that, they would have to be flying, so you can tell that “on the wing” means “in flight.” None of the other answer choices make sense given the context in which the phrase is used.
Example Question #593 : Act Reading
Adapted from “Birds in Retreat” in “Animal Defences—Active Defence” in Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
Among the large running birds are forms, like the African ostrich, in which the absence of powers of flight is largely compensated by the specialization of the legs for the purpose of rapid movement on the ground. For straightforward retreat in open country nothing could be more effective; but another kind of adaptation is required in birds like rails, which are deficient in powers of flight, and yet are able to run through thickly-growing vegetation with such rapidity as to commonly elude their enemies. This is rendered possible by the shape of their bodies, which are relatively narrow and flattened from side to side, so as to easily slip between the stems of grasses, rushes, and similar plants. Anyone who has pursued our native land-rail or corn-crake with intent to capture will have noted how extremely difficult it is even to get within sight of a bird of this sort.
Certain birds, unfortunately for themselves, have lost the power of flight without correspondingly increased powers of running, and have paid the penalty of extinction. Such an arrangement, as might be anticipated, was the result of evolution in islands devoid of any predatory ground-animals, and a classic example of it is afforded by the dodo and its allies, birds related to the pigeons. The dodo itself was a large and clumsy-looking species that at one time abounded in the island of Mauritius, which, like oceanic islands generally, possessed no native mammals, while its indigenous reptiles were only represented by lizards. The ubiquitous sailor, however, and the animals (especially swine) which he introduced, brought about the extinction of this helpless bird in less than a century after its first discovery in 1598. Its memory is now only kept green by a few contemporary drawings and descriptions, certain museum remains, and the proverb "as extinct as a dodo.” A similar fate must overtake any organism suddenly exposed to new and unfavorable conditions, if devoid of sufficient plasticity to rapidly accommodate itself to the altered environment.
What does the author mean in using the underlined phrase “kept green”?
kept fresh and current
kept feeling ill or worried
kept obscure
kept literally alive
kept envious
kept fresh and current
The phrase “keep green” appears in the following sentence in the passage’s second paragraph:
“[The dodo’s] memory is now only kept green by a few contemporary drawings and descriptions, certain museum remains, and the proverb "as extinct as a dodo.”
From this context, we can tell that “kept green” is not being used to refer to the dodo itself, as at this point, the passage is discussing the “memory” that remains of the dodo as an extinct species. This means that “kept literally alive” cannot be correct. Nothing in the sentence suggests that the phrase means “kept envious, “”kept feeling ill or worried,” or “kept obscure.” However, the drawings, descriptions, remains, and proverb all keep the dodo’s memory fresh and current, so “kept fresh and current” is the correct answer.
Example Question #2 : Language In Science Passages
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
Which of the following best restates the meaning of the underlined phrase “as the population increased in numbers, the quantity thus furnished was insufficient”?
As the population of Icelandic ducks increased, their food sources began to deplete
As the number of citizens of New England increased, the desirability of eider down decreased
As the number of Icelandic citizens increased, the populations of Icelandic ducks decreased
As the number of ducks increased, the number of eggs they laid became no longer satisfactory
As the population of New England settlers increased, the amount of eider down collected was no longer enough
As the population of New England settlers increased, the amount of eider down collected was no longer enough
In order to answer this question correctly, you have to consider the context in which this phrase appears: “The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.” It only makes sense for “population” to refer to a population of people, not of ducks, as the sentence concludes by saying “the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.” They would not need to seek out a larger supply of ducks and geese if the population of ducks and geese was increasing. Knowing this, we can discard the answer choices “As the number of ducks increased, the number of eggs they laid became no longer satisfactory” and “As the population of Icelandic ducks increased, their food sources began to deplete.” The sentence is only discussing New England settlers; it does not mention Iceland. So, “As the number of Icelandic citizens increased, the populations of Icelandic ducks decreased” cannot be correct either. This leaves us with two answer choices: “As the number of citizens of New England increased, the desirability of eider down decreased,” and “As the population of North America increased, the amount of eider down collected was no longer enough.” The important distinction made between these two answer choices hinges on the meaning of the word “quantity.” “Quantity” means number of, so the correct answer is “As the population of New England increased, the amount of eider down collected was no longer enough.” If you read the sentence quickly and confused quantity with “quality,” which means how good something is, you may have picked the other answer choice. It’s important to read carefully, especially when answering questions that deal with paraphrasing!
Example Question #594 : Act Reading
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Which of the following best paraphrases the underlined sentence, “Every introduced species is doubtful gravel until panned out”?
An invasive species can cause beneficial effects to its new environment as well as harmful ones.
One should never move a species from its natural environment into a new environment for fear of the consequences.
One can’t tell whether an introduced species will be helpful or harmful until it is actually introduced.
Species that live in gravel are usually harmful when placed in new environments.
Species that live underground should be carefully examined before being moved into new environments.
One can’t tell whether an introduced species will be helpful or harmful until it is actually introduced.
Here, the author is using figurative language to describe introduced species. He metaphorically calls them “doubtful gravel until [they are] panned out.” Because he’s not speaking literally, this sentence has nothing to do with the ground or gravel itself, so we can eliminate the answer choices “Species that live underground should be carefully examined before being moved into new environments” and “Species that live in gravel are usually harmful when placed in new environments.”
What is the author getting at with his metaphor? Panning rocks and dirt allows miners to separate out valuable minerals from other matter. Think of miners “panning for gold”—it’s the same principle, except here, the author is speaking of it as applying to gravel. By calling the gravel “doubtful,” the author is expressing that you don’t know what you’re going to get with it before you “pan it out” and see if there is anything valuable in it. Applying this thinking to invasive species, the author is therefore saying that “one can’t tell whether an introduced species will be helpful or harmful until it is actually introduced.”
If you didn’t know what panning gravel was, you could still solve this question by narrowing down your answer choices. For instance, nowhere in the passage are the beneficial effects of introduced species discussed, though the author discusses this in a previous chapter of his book. Because they’re not mentioned in the passage, we can discard the answer choice “An invasive species can cause beneficial effects to its new environment as well as harmful ones.” This is definitely not what the indicated sentence is saying; if we replaced the sentence with this answer choice, the logic of the paragraph wouldn’t make any sense.
As for the remaining answer choice, “One should never move a species from its natural environment into a new environment for fear of the consequences,” it cannot be correct because in the sentence before the one on which this question focuses, the author writes, “The man who successfully transplants or ‘introduces' into a new habitat any persistent species of living thing assumes a very grave responsibility.” Note that he doesn’t say that this should never be done; he just implies that it could go very badly. It wouldn’t make much sense if in the next sentence, the author said this should never be done. It seems more logical that he would have led with that statement, it being the stronger of the two.
Example Question #51 : Language In Natural Science Passages
"The Place of Lesion Studies in Neuroscience" by Samantha Winter (2013)
It’s easy to forget that the study of neuroscience originated from non-normalized, non-statistically appraised methods like lesion studies. It’s equally easy, with the advent of sophisticated technology, to render such a method obsolete. A small group of neuroscientists today make a case for the reinstitution of lesion studies—the study of abnormal brains with damaged regions in order to better understand the brain—into the twenty-first-century cognitive neuroscience realm. Their suggestion is bold, but their argument is justified.
Cognitive neuroscientists advocate for the use of convergent methods. Many of them argue that with the limitations of our existing techniques, convergent evidence is imperative for sound research. If this is the case, why ignore a method that has potential for implying causality in a domain dominated by correlational research? Rather than advocating for a single method, neuroscientists should take their own advice and use convergent techniques. Sound research should combine a variety of techniques to examine both causal relationships and overcome the individual shortcomings of each method through the use of many.
Lesion studies are also significantly more beneficial now than they were in earlier times. Neuroimaging methods have enhanced our understanding of what contributes to the brain problems most often encountered, and more refined experiments have been developed to confirm the findings from the more unreliable lesion studies. This transformation allows lesion studies to be included alongside the other systems as a mechanism for understanding the human brain.
The underlined selection "to render such a method obsolete" most closely means __________.
to make lesion studies more important
to consider lesion studies outdated
to redesign lesion studies
to question the existence of lesion studies
to make neuroscience the most important field of science
to consider lesion studies outdated
The answer is obsolete, because it means outdated or archaic, and the word “method” refers back to the prior sentence, “methods like lesion studies,” thus stating that the some consider these lesion studies outdated. Because of the meaning of the word obsolete, "to make lesion studies more important" is incorrect. This statement does not refer to the field of neuroscience, therefore "to make neuroscience the most important field of science" is incorrect, and there is no consideration in the paper (and certainly not in the first few sentences) that lesions do not exist, just how valuable they are to the field of study – therefore "to question the existence of lesion studies" is incorrect.
Example Question #595 : Act Reading
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
The phrase “harmonize with,” underlined in the first paragraph, most closely means __________.
match
sing in harmony with
systematize
parallel
conduct
match
The phrase “harmonize with” appears in this sentence in the first paragraph: “There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.” While “harmonize with” can mean “sing in harmony with,” this meaning doesn’t make sense in the context of the passage’s sentence. “Parallel,” “systematize,” and “conduct” don’t make sense either—only “match” makes sense, so it is the correct answer.
Example Question #1 : Extrapolating From The Text In Natural Science Passages
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
It can reasonably be inferred from the passage that which of the following is true?
The flowers given an excess of pollen produced more seeds on average.
Most of Naudin's studies did not concentrate on flowers.
Unripe seeds were of little concern in the experiments.
In one experiment around one hundred and twenty-eight flowers were used.
Thrips feed exclusively on flowers.
In one experiment around one hundred and twenty-eight flowers were used.
In the last paragraph, the experiment mentioned used sixty-four flowers which were over-pollinated, and a further sixty four flowers which were under-pollinated. This makes a total of one hundred and twenty eight flowers.
Example Question #241 : Sat Critical Reading
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
Based on the first text the author describes, the probable reason for the name given to the penguins was to __________.
suggest that they are flightless
describe their nesting habits
differentiate them from other birds found in Portugal
commemorate the voyage that discovered them
elaborate on their character and behavior
elaborate on their character and behavior
The author describes the possible root of the penguins name in the roteiro, saying that “the word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.” Thus, the probable reason for the name is that it alludes to the nature of the penguins.
Example Question #64 : Narrative Science Passages
Adapted from COMMON DISEASES OF FARM ANIMALS (1915) by R. A. Craig
The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the faeces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.
The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.
The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.
SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.
Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.
The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.
It can reasonably be inferred from the passage that __________.
bot-flies are parasitic insects
bot-flies live in hot countries
bot-flies do not trouble the leather trade
bot-flies are never lethal
bot-flies are beneficial to horses
bot-flies are parasitic insects
We can tell that from the description of these flies as being reliant upon other animals' bodies that they are parasitic in their larval stage. The definition of a "parasite" is an animal which lives on or in another animal to get food or protection.