ACT Math : Other Quadrilaterals

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find The Length Of The Side Of A Quadrilateral

If the perimeter of a square is \displaystyle 12x and the area is \displaystyle 81x, what is the side length of the square?

Possible Answers:

\displaystyle 9

\displaystyle 3

\displaystyle 108

\displaystyle 27

\displaystyle 54

Correct answer:

\displaystyle 27

Explanation:

The square has 4 equal sides.  Let's assume a side is \displaystyle y.

\displaystyle 4y=12x

\displaystyle y=3x

Each side of the square has a length of \displaystyle 3x.

The area of the square is:

\displaystyle A=s^2= (3x)^2= 9x^2

Substitute \displaystyle 81x into the area to solve for \displaystyle x.

\displaystyle 9x^2=81x

\displaystyle x=9

Since one side of the square is \displaystyle 3x, substitute the value of \displaystyle x=9  to determine the length of the square side.

\displaystyle y=3(9)=27

Example Question #1 : How To Find The Length Of The Side Of A Quadrilateral

Find the side of a square if the area is \displaystyle 4x^2-16.

Possible Answers:

\displaystyle 2\sqrt{x^2+4}

\displaystyle 2(x-2)

\displaystyle 2(x+2)(x-2)

\displaystyle 2(x+2)

\displaystyle 2\sqrt{x^2-4}

Correct answer:

\displaystyle 2\sqrt{x^2-4}

Explanation:

The area of a square is:

\displaystyle A=s^2

Substitute the area and solve for the side.

\displaystyle s^2 = 4x^2-16

\displaystyle s=\sqrt{4x^2-16} = \sqrt{4(x^2-4)} = \sqrt4 \sqrt{x^2-4}= 2\sqrt{x^2-4}

The quantity inside the square root may not be factorized in attempt to eliminate the square root!

The side length of the square is:

\displaystyle 2\sqrt{x^2-4}

Example Question #4 : How To Find The Length Of The Side Of A Quadrilateral

Q9

Find the perimeter of the rhombus above. 

Possible Answers:

\displaystyle 56

\displaystyle 44

\displaystyle 52

\displaystyle 48

\displaystyle 40

Correct answer:

\displaystyle 44

Explanation:

By definition, a rhombus is a quadrilateral with four equal sides whose angles do not all equal 90 degrees. To find the perimeter, we must find the values of x and y. In order to do so, we must set up a system of equations where we set two sides equal to each other. Any two sides can be used to create these systems.

Here is one example:

Eq. 1

\displaystyle 2x+7=xy+1

\displaystyle 2x+6=xy

\displaystyle y=\frac{2x+6}{x}

Eq. 2

\displaystyle 2x+7=2(x+y)-3=2x+2y-3

\displaystyle 10=2y

\displaystyle y=5 

Now we plug \displaystyle y=5 into the first equation to find the value of \displaystyle x:

\displaystyle 5=\frac{2x+6}{x}

\displaystyle 5x=2x+6

\displaystyle 3x=6

\displaystyle x=\frac{6}{3}=2

Plugging these values into any of the three equations will give us the length of one side equaling 11.

Since there are four sides, \displaystyle 11(4)=44.

Example Question #1 : How To Find An Angle In A Quadrilateral

Q6

\displaystyle \angle ADB bisects \displaystyle \overline{EC}. If \displaystyle \angle DAB=35 then, in degrees, what is the value of \displaystyle \angle ADB?

Possible Answers:

\displaystyle 110^\circ

\displaystyle 70^\circ

\displaystyle 145^\circ

\displaystyle 55^\circ

\displaystyle 125^\circ

Correct answer:

\displaystyle 110^\circ

Explanation:

A rectangle has two sets of parallel sides with all angles equaling 90 degrees. 

Since \displaystyle \angle ADB bisects \displaystyle \overline{EC} into two equal parts, this creates an isosceles triangle \displaystyle ABD.

Therefore \displaystyle \angle DAB = \angle DBA. The sum of the angles in a triangle is 180 degrees.

Therefore \displaystyle \angle ADB = 180-35-35 = 110

Example Question #2 : How To Find An Angle In A Quadrilateral

Q8

The rhombus above is bisected by two diagonals.

If \displaystyle \angle ADE = x+35 and \displaystyle \angle EAB = 2x+10 then, in degrees, what is the value of the \displaystyle \angle BCD?

Note: The shape above may not be drawn to scale. 

Possible Answers:

\displaystyle 15^\circ

\displaystyle 50^\circ

\displaystyle 100^\circ

\displaystyle 90^\circ

\displaystyle 80^\circ

Correct answer:

\displaystyle 80^\circ

Explanation:

A rhombus is a quadrilateral with two sets of parallel sides as well as equal opposite angles. Since the lines drawn inside the rhombus are diagonals, \displaystyle \angle DAB,\angle ABC,\angle BCD, and \displaystyle \angle CDA are each bisected into two equal angles.

Therefore, \displaystyle \angle ADE=\angle ABE , which creates a triangle in the upper right quadrant of the kite. The sum of angles in a triangle is 180 degreees.

Thus,

\displaystyle 180 = (x+35)+(2x+10)+90=3x+135

\displaystyle 3x=45

\displaystyle x=15 

\displaystyle \angle EAB = 2(15)+10=40

Since \displaystyle \angle EAB is only half of \displaystyle \angle DAB,

\displaystyle \angle DAB=2(40)=80

\displaystyle \angle DAB=\angle BCD=80

Example Question #431 : Plane Geometry

Q10

If \displaystyle \angle A = 15+2y and \displaystyle \angle C=\frac{y+96}{2}, then, in degrees, what is the value of \displaystyle \angle B?

 

Note: The figure may not be drawn to scale. 

Possible Answers:

\displaystyle 124^\circ

\displaystyle 118^\circ

\displaystyle 126^\circ

\displaystyle 121^\circ

\displaystyle 132^\circ

Correct answer:

\displaystyle 121^\circ

Explanation:

In a rhombus, opposite angles are equal to each other. Therefore we can set \displaystyle \angle A and \displaystyle \angle C equal to one another and solve for \displaystyle y:

\displaystyle 15+2y=\frac{y+96}{2}

\displaystyle 30+4y=y+96

\displaystyle 3y=66

\displaystyle y=\frac{66}{3}=22

Therefore, \displaystyle \angle A = \angle C=59

A rhombus, like any other quadrilateral, has a sum of angles of 360 degrees.

\displaystyle \angle B = \frac{360-59-59}{2}=121 

Example Question #1 : How To Find An Angle In A Quadrilateral

The interior angles of a quadrilateral are \displaystyle 71^{\circ}\displaystyle 9x^{\circ}\displaystyle 5x^{\circ}, and \displaystyle 3x^{\circ}. What is the measure of the smallest angle of the quadrilateral?

Possible Answers:

\displaystyle \small 51^{o}

\displaystyle \small 20^{o}

\displaystyle \small 71^{o}

\displaystyle \small 30^o

\displaystyle \small 34^{o}

Correct answer:

\displaystyle \small 51^{o}

Explanation:

In order to solve this problem we need the following key piece of knowledge: the interior angles of a quadrilateral add up to 360 degrees. Now, we can write the following equation:

\displaystyle 71+9x+5x+3x=360

When we combine like terms, we get the following:

\displaystyle 71+17x=360

We will need to subtract 71 from both sides of the equation:

\displaystyle 71-71+17x=360-71

\displaystyle 17x=289

Now, we will divide both sides of the equation by 17.

\displaystyle \frac{17x}{17}=\frac{289}{17}

\displaystyle x=17

We now have a value for the x-variable; however, the problem is not finished. The question asks for the measure of the smallest angle. We know that the smallest angle will be one of the following: 

\displaystyle 71^{\circ} or \displaystyle 3x^{\circ}

In order to find out, we will substitute 17 degrees for the x-variable.

\displaystyle 3(17^{\circ})=51^{\circ}

Because 51 degrees is less than 71 degrees, the measure of the smallest angle is the following:

\displaystyle 51^{\circ}

Example Question #1 : How To Find The Perimeter Of A Quadrilateral

A homeowner wants to set up a rectangular enclosure for his dog. The plot of land that the enclosure will enclose measures \displaystyle 12\:ft by \displaystyle 14\:ft. What is the length in feet of chain link fence the owner will need to create a fence around the enclosure?

Possible Answers:

\displaystyle 168\:ft

\displaystyle 52\:ft

\displaystyle 26\:ft

\displaystyle 104\:ft

\displaystyle 126\:ft

Correct answer:

\displaystyle 52\:ft

Explanation:

To answer this question, we must find the perimeter of the fence the homeowner is wanting to create.

To find the perimeter of a rectangle, we multiply the length by two, multiply the width by two, and add these two numbers together. The equation can be represented as this:

\displaystyle 2L + 2W = Perimeter

We must then plug in our values of \displaystyle 12\:ft and \displaystyle 14\:ft given to us for the length and width.

So for this data:

\displaystyle 2L + 2W = 2(12) + 2(14) = 24 + 28 = 52

Therefore, the amount of fencing needed to fully surround the dog's enclosure is \displaystyle 52\:ft.

Learning Tools by Varsity Tutors