ACT Math : Algebra

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #561 : Algebra

The length of a rectangular piece of land is two feet more than three times its width. If the area of the land is , what is the width of that piece of land?

Possible Answers:

Correct answer:

Explanation:

The area of a rectangle is the product of its length by its width, which we know to be equal to  in our problem. We also know that the length is equal to , where  represents the width of the land. Therefore, we can write the following equation:

Distributing the  outside the parentheses, we get:

Subtracting  from each side of the equation, we get:

We get a quadratic equation, and since there is no factor of  and  that adds up to , we use the quadratic formula to solve this equation.

           

We can first calculate the discriminant (i.e. the part under the square root)

 

We replace that value in the quadratic formula, solving both the positive version of the formula (on the left) and the negative version of the formula (on the right):

                                                              

Breaking down the square root:

                          

We can pull two of the twos out of the square root and place a  outside of it:

                  

We can then multiply the  and the :

                                   

At this point, we can reduce the equations, since each of the component parts of their right sides has a factor of :

                                   

Since width is a positive value, the answer is:

 The width of the piece of land is approximately .

Example Question #1 : Quadratic Equation

Solve for x: x2 + 4x = 5

Possible Answers:

None of the other answers

-5 or 1

-5

-1

-1 or 5

Correct answer:

-5 or 1

Explanation:

Solve by factoring.  First get everything into the form Ax2 + Bx + C = 0:

x2 + 4x - 5 = 0

Then factor: (x + 5) (x - 1) = 0

Solve each multiple separately for 0:

X + 5 = 0; x = -5

x - 1 = 0; x = 1

Therefore, x is either -5 or 1

Example Question #1 : Quadratic Equation

Solve for x: (x2 – x) / (x – 1) = 1

Possible Answers:

x = 2

x = -2

x = 1

No solution

x = -1

Correct answer:

No solution

Explanation:

Begin by multiplying both sides by (x – 1):

x2 – x = x – 1

Solve as a quadratic equation: x2 – 2x + 1 = 0

Factor the left: (x – 1)(x – 1) = 0

Therefore,  x = 1.

However, notice that in the original equation, a value of 1 for x would place a 0 in the denominator.  Therefore, there is no solution.

Example Question #2 : Quadratic Equation

A farmer has 44 feet of fence, and wants to fence in his sheep. He wants to build a rectangular pen with an area of 120 square feet. Which of the following is a possible dimension for a side of the fence? 

Possible Answers:

 

 

 

Correct answer:

Explanation:

Set up two equations from the given information:

\dpi{100} \small 120=xy and 

Substitute \dpi{100} \small y=\frac{120}{x} into the second equation:

Multiply through by \dpi{100} \small x.

Then divide by the coefficient of 2 to simplify your work:

Then since you have a quadratic setup, move the  term to the other side (via subtraction from both sides) to set everything equal to 0:

As you look for numbers that multiply to positive 120 and add to -22 so you can factor the quadratic, you might recognize that -12 and -10 fit the bill. This makes your factorization:

This makes the possible solutions 10 and 12. Since 12 does not appear in the choices, \dpi{100} \small 10\ feet is the only possible correct answer.

Example Question #4 : Quadratic Equation

If f(x) = -x2 + 6x - 5, then which could be the value of a if f(a) = f(1.5)?

Possible Answers:
3.5
4
2.5
4.5
1
Correct answer: 4.5
Explanation:

We need to input 1.5 into our function, then we need to input "a" into our function and set these results equal.

f(a) = f(1.5)

f(a) = -(1.5)2 +6(1.5) -5

f(a) = -2.25 + 9 - 5

f(a) = 1.75

-a2 + 6a -5 = 1.75

Multiply both sides by 4, so that we can work with only whole numbers coefficients.

-4a2 + 24a - 20 = 7

Subtract 7 from both sides.

-4a2 + 24a - 27 = 0

Multiply both sides by negative one, just to make more positive coefficients, which are usually easier to work with.

4a2 - 24a + 27 = 0

In order to factor this, we need to mutiply the outer coefficients, which gives us 4(27) = 108. We need to think of two numbers that multiply to give us 108, but add to give us -24. These two numbers are -6 and -18. Now we rewrite the equation as:

4a2 - 6a -18a + 27 = 0

We can now group the first two terms and the last two terms, and then we can factor.

(4a2 - 6a )+(-18a + 27) = 0

2a(2a-3) + -9(2a - 3) = 0

(2a-9)(2a-3) = 0

This means that 2a - 9 =0, or 2a - 3 = 0.

2a - 9 = 0

2a = 9

a = 9/2 = 4.5

2a - 3 = 0

a = 3/2 = 1.5

So a can be either 1.5 or 4.5.

The only answer choice available that could be a is 4.5.

Example Question #1 : Quadratic Equations

Solve for x:  2(x + 1)2 – 5 = 27

Possible Answers:

–3 or 2

3 or 4

3 or –5

–2 or 4

–2 or 5

Correct answer:

3 or –5

Explanation:

Quadratic equations generally have two answers.  We add 5 to both sides and then divide by 2 to get the quadratic expression on one side of the equation: (x + 1)2 = 16.   By taking the square root of both sides we get x + 1 = –4 or x + 1 = 4.  Then we subtract 1 from both sides to get x = –5 or x = 3.

Example Question #168 : Gre Quantitative Reasoning

Solve 3x2 + 10x = –3

Possible Answers:

x = –1/3 or –3

x = –1/6 or –6

x = –4/3 or –1

x = –2/3 or –2

x = –1/9 or –9

Correct answer:

x = –1/3 or –3

Explanation:

Generally, quadratic equations have two answers.

First, the equations must be put in standard form: 3x2 + 10x + 3 = 0

Second, try to factor the quadratic; however, if that is not possible use the quadratic formula.

Third, check the answer by plugging the answers back into the original equation.

Example Question #11 : Quadratic Equation

3x2 – 11x = –10

Which of the following is a valid value for x?

Possible Answers:

5 / 3

None of the other answers

3

-2

-5 / 3

Correct answer:

5 / 3

Explanation:

Begin by getting our equation into the form Ax2 + BX + C = 0:

3x2 – 11x + 10 = 0

Now, if you factor the left, you can find the answer. Begin by considering the two groups.  They will have to begin respectively with 3 and 1 as coefficients for your x value.  Likewise, looking at the last element, you can tell that both will have to have a + or –, since the C coefficient is positive.  Finally, since the B coefficient is negative, we know that it will have to be –. We know therefore:

(3x – ?)(x – ?)

The potential factors of 10 are: 10, 1; 1, 10; 2, 5; 5, 2

5 and 2 work:

(3x – 5)(x – 2) = 0 because you can FOIL (3x – 5)(x – 2) back into 3x2 – 11x + 10.

Now, the trick remaining is to set each of the factors equal to 0 because if either group is 0, the whole equation will be 0:

3x – 5 = 0 → 3x = 5 → x = 5/3

x – 2 = 0 → x = 2

Therefore, x is either 5 / 3 or 2. The former is presented as an answer.

Example Question #11 : Quadratic Equations

What is the sum of the values of x that satisfy the following equation:

16x – 10(4)x + 16 = 0.

Possible Answers:

1

3/2

5/2

4

2

Correct answer:

2

Explanation:

The equation we are asked to solve is 16x – 10(4)x + 16 = 0.

Equations of this type can often be "transformed" into other equations, such as linear or quadratic equations, if we rewrite some of the terms. 

First, we can notice that 16 = 42. Thus, we can write 16x as (42)x or as (4x)2.

Now, the equation is (4x)2 – 10(4)x + 16 = 0

Let's introduce the variable u, and set it equal 4x. The advantage of this is that it allows us to "transform" the original equation into a quadratic equation.

u2 – 10u + 16 = 0

This is an equation with which we are much more familiar. In order to solve it, we need to factor it and set each factor equal to zero. In order to factor it, we must think of two numbers that multiply to give us 16 and add to give us –10. These two numbers are –8 and –2. Thus, we can factor u2 – 10u + 16 = 0 as follows:

(u – 8)(u – 2) = 0

Next, we set each factor equal to 0.

u – 8 = 0

Add 8.

u = 8

u – 2 = 0

Add 2.

u = 2.

Thus, u must equal 2 or 8. However, we want to find x, not u. Since we defined u as equal to 4x, the equations become:

4x = 2 or 4x = 8

Let's solve 4x = 2 first. We can rewrite 4x as (22)x = 22x, so that the bases are the same.

22x = 2 = 21

2x = 1

x = 1/2

Finally, we will solve 4x = 8. Once again, let's write 4x as 22x. We can also write 8 as 23.

22x = 23

2x = 3

x = 3/2

The original question asks us to find the sum of the values of x that solve the equation. Because x can be 1/2 or 3/2, the sum of 1/2 and 3/2 is 2.

The answer is 2. 

Example Question #13 : How To Find The Solution To A Quadratic Equation

I. real

II. rational

III. distinct

Which of the descriptions characterizes the solutions of the equation 2x2 – 6x + 3 = 0?

Possible Answers:

II and III only

I and II only

I and III only

I only

II only

Correct answer:

I and III only

Explanation:

The equation in the problem is quadratic, so we can use the quadratic formula to solve it. If an equation is in the form ax2 + bx + c = 0, where a, b, and c are constants, then the quadratic formula, given below, gives us the solutions of x.

In this particular problem, a = 2, b = –6, and c = 3.

The value under the square-root, b– 4ac, is called the discriminant, and it gives us important information about the nature of the solutions of a quadratic equation.

If the discriminant is less than zero, then the roots are not real, because we would be forced to take the square root of a negative number, which yields an imaginary result. The discriminant of the equation we are given is (–6)2 – 4(2)(3) = 36 – 24 = 12 > 0. Because the discriminant is not negative, the solutions to the equation will be real. Thus, option I is correct.

The discriminant can also tell us whether the solutions of an equation are rational or not. If we take the square root of the discriminant and get a rational number, then the solutions of the equation must be rational. In this problem, we would need to take the square root of 12. However, 12 is not a perfect square, so taking its square root would produce an irrational number. Therefore, the solutions to the equation in the problem cannot be rational. This means that choice II is incorrect.

Lastly, the discriminant tells us if the roots to an equation are distinct (different from one another). If the discriminant is equal to zero, then the solutions of x become (–b + 0)/2a and (–b – 0)/2a, because the square root of zero is 0. Notice that (–b + 0)/2a is the same as (–b – 0)/2a. Thus, if the discriminant is zero, then the roots of the equation are the same, i.e. indistinct. In this particular problem, the discriminant = 12, which doesn't equal zero. This means that the two roots will be different, i.e. distinct. Therefore, choice III applies.

The answer is choices I and III only.

Learning Tools by Varsity Tutors