All ACT Math Resources
Example Questions
Example Question #41 : Algebra
What is the slope of a line parallel to the line defined by the equation:
The slope of a line in slope-intercept form is given by the coefficient, in the equation:
. For two lines to be parallel, they have to have the same slope. Thus we see in our equation that and so a line that is parallel must also have a slope of
Example Question #2 : How To Find The Slope Of Parallel Lines
Which of the following is the equation of a line parallel to the line .
Parallel lines have equivalent slopes, so the correct answer is .
Example Question #41 : Algebra
Which of the following lines is parallel to:
First write the equation in slope intercept form. Add to both sides to get . Now divide both sides by to get . The slope of this line is , so any line that also has a slope of would be parallel to it. The correct answer is .
Example Question #42 : Algebra
Which pair of linear equations represent parallel lines?
Parallel lines will always have equal slopes. The slope can be found quickly by observing the equation in slope-intercept form and seeing which number falls in the "" spot in the linear equation ,
We are looking for an answer choice in which both equations have the same value. Both lines in the correct answer have a slope of 2, therefore they are parallel.
Example Question #6 : How To Find Out If Lines Are Parallel
Which of the following equations represents a line that is parallel to the line represented by the equation ?
Lines are parallel when their slopes are the same.
First, we need to place the given equation in the slope-intercept form.
Because the given line has the slope of , the line parallel to it must also have the same slope.
Example Question #2 : How To Find Out If Lines Are Parallel
Line passes through the points and . Line passes through the point and has a of . Are the two lines parallel? If so, what is their slope? If not, what are their slopes?
No, the lines are not parallel. Line has a slope of and line has a slope of .
Yes, the lines are parallel with a slope of .
No, the lines are not parallel. Line has a slope of and line has slope .
Yes, the lines are parallel with a slope of .
Yes, the lines are parallel with a slope of .
Finding slope for these two lines is as easy as applying the slope formula to the points each line contains. We know that line contains points and , so we can apply our slope formula directly (pay attention to negative signs!)
.
Line contains point and, since the y-intercept is always on the vertical axis, . Thus:
The two lines have the same slope, , and are thus identical.
Example Question #2 : How To Find Out If Lines Are Parallel
Line is described by the equation . Line passes through the points and . Are the two lines parallel? If so, what is their slope? If not, what are their slopes?
No, the lines are not parallel. Line has slope and line has slope .
Yes, the lines are parallel, and both lines have slope .
No, the lines are not parallel. Line has slope and line has slope .
Yes, the lines are parallel, and both lines have slope .
No, the lines are not parallel. Line has slope and line has slope .
We are told at the beginning of this problem that line is described by . Since is our slope-intecept form, we can see that for this line. Since parallel lines have equal slopes, we must determine if line has a slope of .
Since we know that passes through points and , we can apply our slope formula:
Thus, the slope of line is 1. As the two lines do not have equal slopes, the lines are not parallel.
Example Question #1 : How To Find The Equation Of A Perpendicular Line
What line is perpendicular to x + 3y = 6 and travels through point (1,5)?
y = 6x – 3
y = 3x + 2
y = 2x + 1
y = –1/3x – 4
y = 2/3x + 6
y = 3x + 2
Convert the equation to slope intercept form to get y = –1/3x + 2. The old slope is –1/3 and the new slope is 3. Perpendicular slopes must be opposite reciprocals of each other: m1 * m2 = –1
With the new slope, use the slope intercept form and the point to calculate the intercept: y = mx + b or 5 = 3(1) + b, so b = 2
So y = 3x + 2
Example Question #1 : How To Find The Equation Of A Perpendicular Line
What line is perpendicular to and passes through ?
Convert the given equation to slope-intercept form.
The slope of this line is . The slope of the line perpendicular to this one will have a slope equal to the negative reciprocal.
The perpendicular slope is .
Plug the new slope and the given point into the slope-intercept form to find the y-intercept.
So the equation of the perpendicular line is .
Example Question #1 : How To Find The Equation Of A Perpendicular Line
What is the equation of a line that runs perpendicular to the line 2x + y = 5 and passes through the point (2,7)?
x/2 – y = 6
2x – y = 6
x/2 + y = 5
–x/2 + y = 6
2x + y = 7
–x/2 + y = 6
First, put the equation of the line given into slope-intercept form by solving for y. You get y = -2x +5, so the slope is –2. Perpendicular lines have opposite-reciprocal slopes, so the slope of the line we want to find is 1/2. Plugging in the point given into the equation y = 1/2x + b and solving for b, we get b = 6. Thus, the equation of the line is y = ½x + 6. Rearranged, it is –x/2 + y = 6.
Certified Tutor