ACT Math : Algebra

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find Excluded Values

Find the excluded values for \displaystyle x in the following algebraic fraction.

\displaystyle \frac{x^{2}+14x-21}{x^{3}+27}

Possible Answers:

\displaystyle 3, -3, 0

\displaystyle -3

\displaystyle 3

\displaystyle 3, -3

Correct answer:

\displaystyle -3

Explanation:

To find the excluded values, find the \displaystyle x-values that make the denominator equal zero.

1) set the denominator equal to zero.

\displaystyle x^{3}+27=0

2) solve for \displaystyle x.

\displaystyle x^{3}=-27

\displaystyle x=-3

Example Question #1 : Algebraic Fractions

Find the excluded values of the following algebraic fraction

\displaystyle \frac{2x^2-5x-12}{x^2-11x+28}

Possible Answers:

The numerator cancels all the binomials in the denomniator so ther are no excluded values.

\displaystyle x\neq-11

\displaystyle x\neq4

\displaystyle x\neq4,7

\displaystyle x\neq7

Correct answer:

\displaystyle x\neq4,7

Explanation:

To find the excluded values of a algebraic fraction you need to find when the denominator is zero. To find when the denominator is zero you need to factor it. This denominator factors into 

\displaystyle (x-7)(x-4)

so this is zero when x=4,7 so our answer is 

\displaystyle x\neq4,7

Example Question #43 : Algebraic Fractions

Which of the following are answers to the equation below?

\displaystyle \frac{x^2-4}{x^2+5x+6}=0

I. -3

II. -2

III. 2

Possible Answers:

II only

II and III

I only

III only

I, II, and III

Correct answer:

III only

Explanation:

Given a fractional algebraic equation with variables in the numerator and denominator of one side and the other side equal to zero, we rely on a simple concept.  Zero divided by anything equals zero. That means we can focus in on what values make the numerator (the top part of the fraction) zero, or in other words,

\displaystyle x^2-4=0

The expression \displaystyle x^2-4 is a difference of squares that can be factored as 

\displaystyle (x-2)(x+2)=0

Solving this for \displaystyle x gives either \displaystyle 2 or \displaystyle -2.  That means either of these values will make our numerator equal zero.  We might be tempted to conclude that both are valid answers.  However, our statement earlier that zero divided by anything is zero has one caveat. We can never divide by zero itself.  That means that any values that make our denominator zero must be rejected.  Therefore we must also look at the denominator.

\displaystyle x^2+5x+6=0 

The left side factors as follows

\displaystyle (x+3)(x+2)=0

This means that if \displaystyle x is \displaystyle -3 or \displaystyle -2, we end up dividing by zero.  That means that \displaystyle -2 cannot be a valid solution, leaving \displaystyle 2 as the only valid answer.  Therefore only #3 is correct. 

Example Question #1 : Matrices

Evaluate: \displaystyle -3\begin{bmatrix} 2& 3 & 4\\ 4&-5 & 10 \end{bmatrix}

Possible Answers:

\displaystyle \begin{bmatrix} -6& -9& -12\\ -12& 15& -30 \end{bmatrix}

\displaystyle \begin{bmatrix} -1& 0& 1\\ -12& 15&-30 \end{bmatrix}

\displaystyle \begin{bmatrix} -18& 6& -42 \end{bmatrix}

\displaystyle \begin{bmatrix} -12& -1\\ 15& 0\\ -30& 1 \end{bmatrix}

\displaystyle \begin{bmatrix} -12&-6 \\ 15& -9\\ -30&-12 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix} -6& -9& -12\\ -12& 15& -30 \end{bmatrix}

Explanation:

This problem involves a scalar multiplication with a matrix. Simply distribute the negative three and multiply this value with every number in the 2 by 3 matrix. The rows and columns will not change.

\displaystyle -3\begin{bmatrix} 2& 3 & 4\\ 4&-5 & 10 \end{bmatrix}=\begin{bmatrix} -6&-9 &-12 \\ -12& 15&-30 \end{bmatrix}

Example Question #2 : Matrices

\displaystyle 5\begin{bmatrix} a \\ b \end{bmatrix} = 14\begin{bmatrix} 20 \\ 12 \end{bmatrix}

What is \displaystyle a+b?

Possible Answers:

\displaystyle \frac{191}{4}

\displaystyle \frac{148}{5}

\displaystyle \frac{448}{5}

\displaystyle \frac{41}{5}

\displaystyle 29

Correct answer:

\displaystyle \frac{448}{5}

Explanation:

You can begin by treating this equation just like it was:

\displaystyle 5x=14y

That is, you can divide both sides by \displaystyle 5:

\displaystyle \begin{bmatrix} a \\ b \end{bmatrix} = \frac{14}{5}\begin{bmatrix} 20 \\ 12 \end{bmatrix}

Now, for scalar multiplication of matrices, you merely need to multiply the scalar by each component:

\displaystyle \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{14}{5}*20 \\ \frac{14}{5}*12 \end{bmatrix}

Then, simplify:

\displaystyle \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 56 \\ \frac{168}{5} \end{bmatrix}

Therefore, \displaystyle a+b=56+\frac{168}{5}=\frac{280}{5}+\frac{168}{5}=\frac{448}{5}

Example Question #11 : Multiplication Of Matrices

If \displaystyle \frac{1}{2}$\bigl(\begin{smallmatrix} 2a\\4b \end{smallmatrix} \bigr)$=$\bigl(\begin{smallmatrix} 53 \\ 98 \end{smallmatrix} \bigr)$, what is \displaystyle a+b?

Possible Answers:

\displaystyle 53

\displaystyle 98

\displaystyle 102

\displaystyle \frac{99}{2}

\displaystyle \frac{103}{2}

Correct answer:

\displaystyle 102

Explanation:

Begin by distributing the fraction through the matrix on the left side of the equation. This will simplify the contents, given that they are factors of \displaystyle 2:

\displaystyle \frac{1}{2}\begin{bmatrix} 2a\\4b \end{bmatrix}=\begin{bmatrix} a\\2b \end{bmatrix}

Now, this means that your equation looks like:
\displaystyle \begin{bmatrix} a\\2b \end{bmatrix}=\begin{bmatrix} 53 \\ 98 \end{bmatrix}

This simply means:

\displaystyle a=53

and

\displaystyle 2b=98 or \displaystyle b=49

Therefore, \displaystyle a+b=53+49=102

Example Question #3 : Matrices

Simplify:

\displaystyle \begin{bmatrix} 13 & 4\\ 71 &3 \end{bmatrix} + 4\begin{bmatrix} 5 & 3\\ 11 &22 \end{bmatrix}

Possible Answers:

\displaystyle \begin{bmatrix} 49 & 206\end{bmatrix}

\displaystyle \begin{bmatrix} 49\\ 206\end{bmatrix}

\displaystyle \begin{bmatrix} 31 & 93\\ 3 &21 \end{bmatrix}

\displaystyle \begin{bmatrix} 33 & 16\\ 115 & 91\end{bmatrix}

\displaystyle \begin{bmatrix} 20 & 12\\ 44 &88 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix} 33 & 16\\ 115 & 91\end{bmatrix}

Explanation:

Scalar multiplication and addition of matrices are both very easy. Just like regular scalar values, you do multiplication first:

\displaystyle \begin{bmatrix} 13 & 4\\ 71 &3 \end{bmatrix} + 4\begin{bmatrix} 5 & 3\\ 11 &22 \end{bmatrix}= \begin{bmatrix} 13 & 4\\ 71 &3 \end{bmatrix}+\begin{bmatrix} 20 & 12\\ 44 &88 \end{bmatrix}

The addition of matrices is very easy. You merely need to add them directly together, correlating the spaces directly.

\displaystyle \begin{bmatrix} 13 & 4\\ 71 &3 \end{bmatrix} + \begin{bmatrix} 20 & 12\\ 44 &88 \end{bmatrix} = \begin{bmatrix} 13 +20 & 4+12\\ 71+44 &3 +88\end{bmatrix}

\displaystyle \begin{bmatrix} 13 +20 & 4+12\\ 71+44 &3 +88\end{bmatrix}= \begin{bmatrix} 33 & 16\\ 115 & 91\end{bmatrix}

Example Question #1 : Matrices

Simplify the following

\displaystyle 3\cdot \begin{bmatrix} -3& 5&0 \\ 4& -1& 2 \end{bmatrix}

Possible Answers:

\displaystyle 21

\displaystyle \begin{bmatrix} 6 \\ 15 \end{bmatrix}

\displaystyle \begin{bmatrix} -9& 5&0 \\ 12& -1& 2 \end{bmatrix}

\displaystyle \begin{bmatrix} 0& 0&0 \\ 1& 1& 1 \end{bmatrix}

\displaystyle \begin{bmatrix} -9& 15&0 \\ 12& -3& 6 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix} -9& 15&0 \\ 12& -3& 6 \end{bmatrix}

Explanation:

When multplying any matrix by a scalar quantity (3 in our case), we simply multiply each term in the matrix by the scalar.

Therefore, every number simply gets multiplied by 3, giving us our answer.

\displaystyle \begin{bmatrix} -9& 15&0 \\ 12& -3& 6 \end{bmatrix}

Example Question #5 : Scalar Interactions With Matrices

Define matrix \displaystyle M = \begin{bmatrix} 3&-5 &4 \\ 5&6 &1 \\ 3&-4 & -7 \end{bmatrix}, and let \displaystyle I be the 3x3 identity matrix.

If \displaystyle N = M -6 I, then evaluate \displaystyle n _{3,1}.

Possible Answers:

\displaystyle 4

\displaystyle -2

\displaystyle -3

\displaystyle 0

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

The 3x3 identity matrix is 

\displaystyle I = \begin{bmatrix} 1&0 &0 \\ 0&1&0 \\ 0&0 &1\end{bmatrix}

Both scalar multplication of a matrix and matrix addition are performed elementwise, so

\displaystyle n _{3,1} = m _{3,1} -6 i _{3,1}

\displaystyle m _{3,1} is the first element in the third row of \displaystyle M, which is 3; similarly, \displaystyle i _{3,1} = 0. Therefore, 

\displaystyle n _{3,1} = 3 -6 (0)= 3

Example Question #1 : Matrices

Define matrix \displaystyle M = \begin{bmatrix} 3&-5 &4 \\ 5&6 &1 \\ 3&-4 & -7 \end{bmatrix}, and let \displaystyle I be the 3x3 identity matrix.

If \displaystyle N = 7M + I, then evaluate \displaystyle n _{3,1}.

Possible Answers:

\displaystyle 21

\displaystyle 35

\displaystyle 29

\displaystyle 22

\displaystyle 28

Correct answer:

\displaystyle 21

Explanation:

The 3x3 identity matrix is 

\displaystyle I = \begin{bmatrix} 1&0 &0 \\ 0&1&0 \\ 0&0 &1\end{bmatrix}

Both scalar multplication of a matrix and matrix addition are performed elementwise, so

\displaystyle n _{3,1} = 7 m _{3,1} + i _{3,1}

\displaystyle m _{3,1} is the first element in the third row of \displaystyle M, which is 3; similarly, \displaystyle i _{3,1} = 0. Therefore, 

\displaystyle n _{3,1} = 7 (3) + 0 = 21

Learning Tools by Varsity Tutors