ACT Math : Algebra

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find Excluded Values

Find the excluded values for  in the following algebraic fraction.

Possible Answers:

Correct answer:

Explanation:

To find the excluded values, find the -values that make the denominator equal zero.

1) set the denominator equal to zero.

2) solve for .

Example Question #3 : How To Find Excluded Values

Find the excluded values of the following algebraic fraction

Possible Answers:

The numerator cancels all the binomials in the denomniator so ther are no excluded values.

Correct answer:

Explanation:

To find the excluded values of a algebraic fraction you need to find when the denominator is zero. To find when the denominator is zero you need to factor it. This denominator factors into 

so this is zero when x=4,7 so our answer is 

Example Question #1 : How To Find Excluded Values

Which of the following are answers to the equation below?

I. -3

II. -2

III. 2

Possible Answers:

II only

II and III

III only

I, II, and III

I only

Correct answer:

III only

Explanation:

Given a fractional algebraic equation with variables in the numerator and denominator of one side and the other side equal to zero, we rely on a simple concept.  Zero divided by anything equals zero. That means we can focus in on what values make the numerator (the top part of the fraction) zero, or in other words,

The expression  is a difference of squares that can be factored as 

Solving this for  gives either  or .  That means either of these values will make our numerator equal zero.  We might be tempted to conclude that both are valid answers.  However, our statement earlier that zero divided by anything is zero has one caveat. We can never divide by zero itself.  That means that any values that make our denominator zero must be rejected.  Therefore we must also look at the denominator.

 

The left side factors as follows

This means that if  is  or , we end up dividing by zero.  That means that  cannot be a valid solution, leaving  as the only valid answer.  Therefore only #3 is correct. 

Example Question #1 : Matrices

Evaluate: 

Possible Answers:

Correct answer:

Explanation:

This problem involves a scalar multiplication with a matrix. Simply distribute the negative three and multiply this value with every number in the 2 by 3 matrix. The rows and columns will not change.

Example Question #1061 : Algebra

What is ?

Possible Answers:

Correct answer:

Explanation:

You can begin by treating this equation just like it was:

That is, you can divide both sides by :

Now, for scalar multiplication of matrices, you merely need to multiply the scalar by each component:

Then, simplify:

Therefore, 

Example Question #1062 : Algebra

If , what is ?

Possible Answers:

Correct answer:

Explanation:

Begin by distributing the fraction through the matrix on the left side of the equation. This will simplify the contents, given that they are factors of :

Now, this means that your equation looks like:

This simply means:

and

 or 

Therefore, 

Example Question #1 : How To Find Scalar Interactions With A Matrix

Simplify:

Possible Answers:

Correct answer:

Explanation:

Scalar multiplication and addition of matrices are both very easy. Just like regular scalar values, you do multiplication first:

The addition of matrices is very easy. You merely need to add them directly together, correlating the spaces directly.

Example Question #1 : Matrices

Simplify the following

Possible Answers:

Correct answer:

Explanation:

When multplying any matrix by a scalar quantity (3 in our case), we simply multiply each term in the matrix by the scalar.

Therefore, every number simply gets multiplied by 3, giving us our answer.

Example Question #5 : Scalar Interactions With Matrices

Define matrix , and let  be the 3x3 identity matrix.

If , then evaluate .

Possible Answers:

Correct answer:

Explanation:

The 3x3 identity matrix is 

Both scalar multplication of a matrix and matrix addition are performed elementwise, so

 is the first element in the third row of , which is 3; similarly, . Therefore, 

Example Question #4 : Matrices

Define matrix , and let  be the 3x3 identity matrix.

If , then evaluate .

Possible Answers:

Correct answer:

Explanation:

The 3x3 identity matrix is 

Both scalar multplication of a matrix and matrix addition are performed elementwise, so

 is the first element in the third row of , which is 3; similarly, . Therefore, 

Learning Tools by Varsity Tutors