Undefined control sequence \x


ACT Math : Algebra

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #3 : How To Find Inverse Variation

When \displaystyle x=2,  \displaystyle y=18.

When \displaystyle x=9\displaystyle y=4.

If \displaystyle x varies inversely with \displaystyle y, what is the value of \displaystyle y when \displaystyle x=12?

Possible Answers:

\displaystyle y=1

\displaystyle y=6

\displaystyle y=3

\displaystyle y=x

\displaystyle y=1.5

Correct answer:

\displaystyle y=3

Explanation:

If \displaystyle y varies inversely with \displaystyle x\displaystyle y=\frac{K}{x}.

 

1. Using any of the two \displaystyle x,y combinations given, solve for \displaystyle K:

Using \displaystyle (2,18):

\displaystyle 18=\frac{K}{2}

\displaystyle K=36

 

2. Use your new equation \displaystyle y=\frac{36}{x} and solve when \displaystyle x=12:

\displaystyle y=\frac{36}{12}=3

 

Example Question #4 : How To Find Inverse Variation

x

y

\displaystyle 5

\displaystyle 4.8

\displaystyle 6.4

\displaystyle 3.75

\displaystyle 3

\displaystyle n

\displaystyle 20

\displaystyle 1.2

If \displaystyle y varies inversely with \displaystyle x, what is the value of \displaystyle n?

Possible Answers:

\displaystyle 4

\displaystyle 17

\displaystyle 8

\displaystyle 12

\displaystyle 6

Correct answer:

\displaystyle 8

Explanation:

An inverse variation is a function in the form: \displaystyle xy = k or \displaystyle y = \frac{k}{x}, where \displaystyle k is not equal to 0. 

Substitute each \displaystyle \left ( x,y \right ) in \displaystyle xy = k.

\displaystyle 5(4.8) = 24

\displaystyle 6.4(3.75) = 24

\displaystyle 20(1.2) = 24

Therefore, the constant of variation, \displaystyle k, must equal 24. If \displaystyle y varies inversely as \displaystyle x\displaystyle 3n must equal 24. Solve for \displaystyle n.

\displaystyle 3n = 24

\displaystyle n = 8

Example Question #1 : How To Find Inverse Variation

Two numbers \displaystyle x and \displaystyle y vary inversely, and \displaystyle x=3 when \displaystyle y=8. If this is true, what is the value of \displaystyle x when \displaystyle y =6?

Possible Answers:

\displaystyle 10

\displaystyle 12

\displaystyle 3

\displaystyle 4

\displaystyle 6

Correct answer:

\displaystyle 4

Explanation:

If \displaystyle x=3 when \displaystyle y=8, and the variation is direct, then \displaystyle xy = 24. Using this, we know that if \displaystyle y=6\displaystyle x= \frac{24}{6} = 4.

Example Question #891 : Algebra

Which of the following provides the complete solution set for \displaystyle |2-z|>0 ?

Possible Answers:

\displaystyle z>2

\displaystyle z=2

\displaystyle z< 2

No solutions

Correct answer:

Explanation:

The absolute value will always be positive or 0, therefore all values of z will create a true statement as long as \displaystyle 2-z\neq 0. Thus all values except for 2 will work.

Example Question #1 : How To Find Excluded Values

Find the excluded values in the following algebraic fraction.

\displaystyle \frac{2x^{2}+3x-12}{2x^{2}+9x-5}

Possible Answers:

\displaystyle -\frac{1}{3}, 4

\displaystyle \frac{1}{3}, -4

\displaystyle \frac{1}{2}, -5

\displaystyle -\frac{1}{2}, 5

Correct answer:

\displaystyle \frac{1}{2}, -5

Explanation:

In order to find excluded values, find the values that make the denominator equal zero.

To do this, you must factor the denominator:

\displaystyle (2x-1)(x+5)

Now, set each part equal to zero and solve for \displaystyle x.

\displaystyle 2x-1=0

\displaystyle x=\frac{1}{2}

\displaystyle x+5=0

\displaystyle x=-5

Example Question #1 : How To Find Excluded Values

Find the excluded values for \displaystyle x for the following algebraic fraction.

\displaystyle \frac{x^{2}+4x-12}{x^{2}+5x+6}

Possible Answers:

\displaystyle 3, 2

\displaystyle 3, -2

\displaystyle -3, 2

\displaystyle -3, -2

Correct answer:

\displaystyle -3, -2

Explanation:

In order to find the excluded values for x, find the values that make the denominator zero. 

In order to find the zeroes, factor the denominator: 

\displaystyle (x+3)(x+2)

Now, set each part equal to zero.

\displaystyle (x+3)=0

\displaystyle (x+2)=0

\displaystyle x=-3

\displaystyle x=-2

Example Question #1 : How To Find Excluded Values

Find the excluded values for \displaystyle x for the following algebraic fraction.

\displaystyle \frac{x+3}{4-x^{2}}

Possible Answers:

\displaystyle -2

\displaystyle 2, -2

\displaystyle 2, -2, 0

\displaystyle 2

Correct answer:

\displaystyle 2, -2

Explanation:

To find the excluded values, find the values that make the denominator zero. 

\displaystyle 4-x^{2}=0

\displaystyle 4=x^{2}

\displaystyle x=2, -2

Example Question #1 : How To Find Excluded Values

Find the excluded values for \displaystyle x for the following algebraic fraction.

\displaystyle \frac{x-4}{x(x^{2}-9)}

Possible Answers:

\displaystyle 3, 0

\displaystyle -3, 0

\displaystyle 3, -3

\displaystyle 3, -3, 0

Correct answer:

\displaystyle 3, -3, 0

Explanation:

To find the excluded values, find the values that make the denominator equal zero. 

To do that, set the denominator equal to zero and solve for \displaystyle x

Begin by taking each multiple in the denominator and setting it equal to zero. 

\displaystyle x=0

\displaystyle x^{2}-9=0

\displaystyle x^{2}=9

\displaystyle x=3, -3

\displaystyle x=3, -3, 0

Example Question #2 : How To Find Excluded Values

Find the excluded values for \displaystyle x in the following algebraic fraction.

\displaystyle \frac{x^{3}+8x-9}{x^{2}+7x+12}

Possible Answers:

\displaystyle 4, -3

\displaystyle -4, -3

\displaystyle 4, 3

\displaystyle -4, 3

Correct answer:

\displaystyle -4, -3

Explanation:

To find the excluded values, find the values that make the denominator equal zero. 

To do that, begin by factoring the denominator.

\displaystyle (x+4)(x+3)

Now, set each part equal to zero.

\displaystyle x+4=0

\displaystyle x+3=0

Now, solve for \displaystyle x.

\displaystyle x=-4

\displaystyle x=-3

Example Question #2 : How To Find Excluded Values

Find the excluded values for \displaystyle x in the following algebraic fraction.

\displaystyle \frac{x^{2}+9}{x^{2}-16}

Possible Answers:

\displaystyle 4, -4, 0

\displaystyle 4, -4

\displaystyle 4

\displaystyle -4

Correct answer:

\displaystyle 4, -4

Explanation:

To find the excluded values, find the \displaystyle x-values that make the denominator equal zero. 

To do this, set the denominator equal to zero:

\displaystyle x^{2}-16=0

Next, solve for x.

\displaystyle x^{2}=16

\displaystyle x=4, -4

Learning Tools by Varsity Tutors