Trigonometry : Trigonometry

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #251 : Trigonometry

Solve for :

Possible Answers:

Correct answer:

Explanation:

Solve using the quadratic formula:

5 is outside the range for cosine, so the only solution that works is :

according to a calculator

The other angle with a cosine of is

Example Question #252 : Trigonometry

Solve for :

Possible Answers:

Correct answer:

Explanation:

Use the quadratic formula:

-2 is outside the range of cosine, so the answer has to come from :

according to a calculator

The other angle with a cosine of is

Example Question #253 : Trigonometry

Solve the equation

for .

Possible Answers:

Correct answer:

Explanation:

First of all, we can use the Pythagorean identity  to rewrite the given equation in terms of .

This is a quadratic equation in terms of ; hence, we can use the quadratic formula to solve this equation for .

where .

.

Now,  when , and  when  or .

Hence, the solutions to the original equation  are

 

Example Question #254 : Trigonometry

In the interval , what values of x satisfy the following equation?

Possible Answers:

Correct answer:

Explanation:

We start by rewriting the  term on the right hand side in terms of .

 

We then move everything to the left hand side of the equation and cancel.

 

Apply the quadratic formula:

 

So . Using the unit circle, the two values of  that yield this are  and .

Example Question #1 : Trigonometric Applications

Given a right triangle where , find the missing side.

Possible Answers:

Correct answer:

Explanation:

Since the triangle in question is a right triangle we can use the Pythagorean Theorem. First, we must determine which sides we are given. Since the function we are given is sine, we know that we are given the opposite side and the hypotenuse. Therefore, setting up the equation:

Where,  and  are given.

Solving the above equation:

We toss out the negative solution since the length of a side must be positive.

Example Question #2 : Trigonometric Applications

Given a right triangle where , find the missing side.

Possible Answers:

Correct answer:

Explanation:

Since the triangle in question is a right triangle we can use the Pythagorean Theorem. First, we must determine which sides we are give. Since the function we are given is tangent, we know that we are given the opposite and adjacent sides. Therefore, setting up the equation:

Where,  and  are given.

Solving the above equation:

We toss out the negative solution since the length of a side must be positive.

Example Question #3 : Trigonometric Applications

Given a right triangle where , find the missing side.

Possible Answers:

Correct answer:

Explanation:

Since the triangle in question is a right triangle we can use the Pythagorean Theorem. First, we must determine which sides we are given. Since the function we are given is cosine, we know that we are given the adjacent side and hypotenuse. Therefore, setting up the equation:

Where,  and  are given.

Solving the above equation:

We toss out the negative solution since the length of a side must be positive.

Example Question #4 : Trigonometric Applications

Given the accompanying triangle where  and , determine the length of the hypotenuse.

Right_triangle

Possible Answers:

Correct answer:

Explanation:

We are given the opposite side, with respect to the angle, along with the angle. Therefore, we utilize the sine function to determine the length of the hypotenuse:

Substituting the given values:

Cross multiplying:

Solving for :

 

Example Question #1 : Triangles

Given the accompanying right triangle where  and , determine the measure of  to the nearest degree.

Right_triangle

Possible Answers:

Correct answer:

Explanation:

We are given two sides of the right triangle, namely the hypotenuse and the opposite side of the angle. Therefore, we simply use the sine function to determine the angle:

In order to isolate the angle we must apply the inverse sine function to both sides:

Example Question #6 : Trigonometric Applications

Given the accompanying right triangle where  and , determine the measure of  to the nearest degree.

Right_triangle

Possible Answers:

Correct answer:

Explanation:

We are given two sides of the right triangle, namely the hypotenuse and the adjacent side of the angle. Therefore, we simply use the cosine function to determine the angle:

In order to isolate the angle we must apply the inverse cosine function to both sides:

Learning Tools by Varsity Tutors