Trigonometry : Trigonometry

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Quadratic Formula With Trigonometry

Solve for \(\displaystyle x\):

\(\displaystyle 0 = 4 \cos ^2 x - 21 \cos x + 5\)

Possible Answers:

\(\displaystyle x = 75.52^o, 284.48^o\)

\(\displaystyle x = 75.52^o, 255.52 ^o\)

\(\displaystyle 14.47^o, 345.52^o\)

\(\displaystyle x = 75.52^o, 104.48^o\)

\(\displaystyle 14.47^o, 165.52^o\)

Correct answer:

\(\displaystyle x = 75.52^o, 284.48^o\)

Explanation:

Solve using the quadratic formula:

\(\displaystyle \cos x = \frac{21 \pm \sqrt{441 - 4(4)(5)}}{2(4) } = \frac{ 21 \pm \sqrt{361}}{8} = \frac{21 \pm 19}{8}\)

\(\displaystyle \cos x = 5, \frac{1}{4}\)

5 is outside the range for cosine, so the only solution that works is \(\displaystyle \cos x = \frac{1}{4}\):

\(\displaystyle x = \cos ^{-1} (\frac{1}{4}) \approx 75.52 ^o\) according to a calculator

The other angle with a cosine of \(\displaystyle \frac{1}{4}\) is \(\displaystyle 360^o - 75.52^o = 284.48^o\)

Example Question #64 : Solving Trigonometric Equations

Solve for \(\displaystyle x\): \(\displaystyle 0 = 3 \cos ^2 x + 8 \cos x + 4\)

Possible Answers:

\(\displaystyle 48.19^o, 228.19^o\)

\(\displaystyle 48.19^o, 311.81^o\)

\(\displaystyle 131.81^o, 311.81^o\)

\(\displaystyle 48.19^o, 131.81^o\)

\(\displaystyle 131.81^o, 228.19^o\)

Correct answer:

\(\displaystyle 131.81^o, 228.19^o\)

Explanation:

Use the quadratic formula:

\(\displaystyle \cos x = \frac{ -8 \pm \sqrt{64 - 4(3)(4)}}{2(3)} = \frac{-8 \pm \sqrt{16}}{6 } = \frac{-8\pm4}{6}\)

\(\displaystyle \cos x = -2 \enspace or - \frac{2}{3}\)

-2 is outside the range of cosine, so the answer has to come from \(\displaystyle - \frac{2}{3}\):

\(\displaystyle \cos x = - \frac{2}{3}\)

\(\displaystyle x = \cos^{-1} (-\frac{2}{3} ) \approx 131.81^o\) according to a calculator

The other angle with a cosine of \(\displaystyle -\frac{2}{3}\) is \(\displaystyle 360^o - 131.81^o = 228.19^o\)

Example Question #65 : Solving Trigonometric Equations

Solve the equation

\(\displaystyle 2cos^2x+sinx=1\)

for \(\displaystyle 0\leq x\leq2\pi\).

Possible Answers:

\(\displaystyle \frac{7\pi}{6},\frac{11\pi}{6}\)

\(\displaystyle \frac{\pi}{2},\frac{\pi}{6}, \frac{2\pi}{3}\)

\(\displaystyle \frac{\pi}{2},\frac{\pi}{6}\)

\(\displaystyle \frac{\pi}{2},\frac{7\pi}{6}, \frac{11\pi}{6}\)

\(\displaystyle \frac{\pi}{2}\)

Correct answer:

\(\displaystyle \frac{\pi}{2},\frac{7\pi}{6}, \frac{11\pi}{6}\)

Explanation:

First of all, we can use the Pythagorean identity \(\displaystyle sin^2x+cos^2x=1\) to rewrite the given equation in terms of \(\displaystyle sinx\).

\(\displaystyle 2cos^2x+sinx=1\)

\(\displaystyle \Rightarrow 2(1-sin^2x)+sinx=1\)

\(\displaystyle \Rightarrow 2-2sin^2x+sinx=1\)

\(\displaystyle \Rightarrow -2sin^2x+sinx+1=0\)

\(\displaystyle \Rightarrow 2sin^2x-sinx-1=0\)

This is a quadratic equation in terms of \(\displaystyle sinx\); hence, we can use the quadratic formula to solve this equation for \(\displaystyle sinx\).

\(\displaystyle sinx=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\)

where \(\displaystyle a=2, b=-1, c=-1\).

\(\displaystyle \Rightarrow sinx=\frac{1\pm \sqrt{(-1)^2-4(2)(-1)}}{2(2)}\)

\(\displaystyle \Rightarrow sinx=\frac{1\pm3}{4}\)

\(\displaystyle \Rightarrow sinx=-\frac{1}{2}, sinx=1\).

Now, \(\displaystyle sinx=1\) when \(\displaystyle x=\frac{\pi}{2}\), and \(\displaystyle sinx=-\frac{1}{2}\) when \(\displaystyle x=\frac{7\pi}{6}\) or \(\displaystyle \frac{11\pi}{6}\).

Hence, the solutions to the original equation \(\displaystyle 2cos^2x+sinx=1\) are

\(\displaystyle x=\) \(\displaystyle \frac{\pi}{2},\frac{7\pi}{6}, \frac{11\pi}{6}\)

Example Question #66 : Solving Trigonometric Equations

In the interval \(\displaystyle 0\leq x\leq\pi\), what values of x satisfy the following equation?

\(\displaystyle 1-\sin x=\cos^2x-\frac{1}{4}\)

Possible Answers:

\(\displaystyle x=0,\pi\)

\(\displaystyle x=\frac{\pi}{6},\frac{5\pi}{6}\)

\(\displaystyle x=\frac{\pi}{3},\frac{2\pi}{3}\)

\(\displaystyle x=\frac{\pi}{4},\frac{7\pi}{12}\)

Correct answer:

\(\displaystyle x=\frac{\pi}{6},\frac{5\pi}{6}\)

Explanation:

We start by rewriting the \(\displaystyle \cos^2x\) term on the right hand side in terms of \(\displaystyle \sin^2x\).

\(\displaystyle \cos^2x=1-\sin^2x\)

\(\displaystyle 1-\sin x=1-\sin^2x-\frac{1}{4}\)

 

We then move everything to the left hand side of the equation and cancel.

\(\displaystyle 1-\sin x-1+\sin^2x+\frac{1}{4}=0\)

\(\displaystyle \sin^2x-\sin x+\frac{1}{4}=0\)

 

Apply the quadratic formula:

\(\displaystyle \begin{align*} \sin x&=\frac{-(-1)\pm\sqrt{(-1)^2-4(1)(\frac{1}{4})}}{2(1)}\\ &=\frac{1\pm\sqrt{1-1}}{2}\\ &=\frac{1}{2} \end{align*}\)

 

So \(\displaystyle \sin x=\frac{1}{2}\). Using the unit circle, the two values of \(\displaystyle x\) that yield this are \(\displaystyle x=\frac{\pi}{6}\) and \(\displaystyle x=\frac{5\pi}{6}\).

Example Question #1 : Triangles

Given a right triangle where \(\displaystyle \sin\theta = \frac{3}{5}\), find the missing side.

Possible Answers:

\(\displaystyle \sqrt{34}\)

\(\displaystyle \sqrt{41}\)

\(\displaystyle 3\)

\(\displaystyle {}\sqrt{8}\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 4\)

Explanation:

Since the triangle in question is a right triangle we can use the Pythagorean Theorem. First, we must determine which sides we are given. Since the function we are given is sine, we know that we are given the opposite side and the hypotenuse. Therefore, setting up the equation:

\(\displaystyle a^{2}+b^{2}=c^{2}\)

Where, \(\displaystyle a\) and \(\displaystyle c\) are given.

\(\displaystyle 3^{2} + b^{2} = 5^{2}\)

Solving the above equation:
\(\displaystyle b = \sqrt{16} = 4\)

We toss out the negative solution since the length of a side must be positive.

Example Question #2 : Triangles

Given a right triangle where \(\displaystyle \tan\theta = \frac{17}{18}\), find the missing side.

Possible Answers:

\(\displaystyle 24.76\)

\(\displaystyle 24.67\)

\(\displaystyle 5.29\)

\(\displaystyle 5.92\)

\(\displaystyle 17.01\)

Correct answer:

\(\displaystyle 24.76\)

Explanation:

Since the triangle in question is a right triangle we can use the Pythagorean Theorem. First, we must determine which sides we are give. Since the function we are given is tangent, we know that we are given the opposite and adjacent sides. Therefore, setting up the equation:

\(\displaystyle a^{2}+b^{2}=c^{2}\)

Where, \(\displaystyle a\) and \(\displaystyle b\) are given.

\(\displaystyle 17^{2}+18^{2} = c^{2}\)

Solving the above equation:

\(\displaystyle c = \sqrt{613} = 24.76\)

We toss out the negative solution since the length of a side must be positive.

Example Question #1 : Triangles

Given a right triangle where \(\displaystyle \cos\theta = \frac{104}{109}\), find the missing side.

Possible Answers:

\(\displaystyle 32.63\)

\(\displaystyle 150.56\)

\(\displaystyle 150.66\)

\(\displaystyle 107\)

\(\displaystyle 32.36\)

Correct answer:

\(\displaystyle 32.63\)

Explanation:

Since the triangle in question is a right triangle we can use the Pythagorean Theorem. First, we must determine which sides we are given. Since the function we are given is cosine, we know that we are given the adjacent side and hypotenuse. Therefore, setting up the equation:

\(\displaystyle a^{2}+b^{2}=c^{2}\)

Where, \(\displaystyle a\) and \(\displaystyle c\) are given.

\(\displaystyle 104^{2} + b^{2} = 109^{2}\)

Solving the above equation:

\(\displaystyle b=\sqrt{1,065}=32.63\)

We toss out the negative solution since the length of a side must be positive.

Example Question #4 : Triangles

Given the accompanying triangle where \(\displaystyle b=6\) and \(\displaystyle \theta = 17^{\circ}\), determine the length of the hypotenuse.

Right_triangle

Possible Answers:

\(\displaystyle 20.52\)

\(\displaystyle 1.83\)

\(\displaystyle 5.74\)

\(\displaystyle 1.75\)

\(\displaystyle 19.63\)

Correct answer:

\(\displaystyle 20.52\)

Explanation:

We are given the opposite side, with respect to the angle, along with the angle. Therefore, we utilize the sine function to determine the length of the hypotenuse:

\(\displaystyle \sin\theta = \frac{opposite}{hypotenuse}\)

Substituting the given values:

\(\displaystyle \sin 17^{\circ} = \frac{6}{h}\)

Cross multiplying:

\(\displaystyle h\sin 17^{\circ}=6\)

Solving for \(\displaystyle h\):

\(\displaystyle h = \frac{6}{\sin 17^{\circ}} = 20.52\)

 

Example Question #1 : Right Triangles

Given the accompanying right triangle where \(\displaystyle b=7\) and \(\displaystyle c=13\), determine the measure of \(\displaystyle \theta\) to the nearest degree.

Right_triangle

Possible Answers:

\(\displaystyle 30^{\circ}\)

\(\displaystyle 36^{\circ}\)

\(\displaystyle 67^{\circ}\)

\(\displaystyle 68^{\circ}\)

\(\displaystyle 33^{\circ}\)

Correct answer:

\(\displaystyle 33^{\circ}\)

Explanation:

We are given two sides of the right triangle, namely the hypotenuse and the opposite side of the angle. Therefore, we simply use the sine function to determine the angle:
\(\displaystyle \sin\theta = \frac{opposite}{hypotenuse} =\frac{7}{13}\)

In order to isolate the angle we must apply the inverse sine function to both sides:

\(\displaystyle \theta = sin^{-1}\frac{7}{13} = 32.57^{\circ} \approx 33^{\circ}\)

Example Question #1 : Triangles

Given the accompanying right triangle where \(\displaystyle a=35\) and \(\displaystyle c=70\), determine the measure of \(\displaystyle \theta\) to the nearest degree.

Right_triangle

Possible Answers:

\(\displaystyle 30^{\circ}\)

\(\displaystyle 62^{\circ}\)

\(\displaystyle 45^{\circ}\)

\(\displaystyle 60^{\circ}\)

\(\displaystyle 37^{\circ}\)

Correct answer:

\(\displaystyle 60^{\circ}\)

Explanation:

We are given two sides of the right triangle, namely the hypotenuse and the adjacent side of the angle. Therefore, we simply use the cosine function to determine the angle:

\(\displaystyle \cos\theta = \frac{adjacent}{hypotenuse}=\frac{35}{70}\)

In order to isolate the angle we must apply the inverse cosine function to both sides:

\(\displaystyle \theta = \cos^{-1}\frac{35}{70}=\cos^{-1}\frac{1}{2}=60^{\circ}\)

Learning Tools by Varsity Tutors