Trigonometry : Triangles

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #101 : Triangles

If , and  =  find  to the nearest degree.

Possible Answers:

 and 

 and 

Correct answer:

 and 

Explanation:

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no  that satisfies the triangle can be found. If and there is a right triangle determined. Finally, if , two measures of  can be calculated:  an acute  and an obtuse angle . In this case, there may be one or two triangles determined. If , then the  is not a solution.

In this problem, , so there may be one or two angles that satisfy this triangle. Since we have the length of two sides of the triangle and the corresponding angle of one of the sides, we can use the Law of Sines to find the angle that we are looking for. This goes as follows:

Inputting the values of the problem

Rearranging the equation to isolate 

 

When the original given angle () is acute, there will be:

  • One solution if the side opposite the given angle is equal to or greater than the other given side
  • No solution, one solution (right triangle), or two solutions if the side opposite the given angle is less than the other given side

In this problem, the side opposite the given angle is , which is less than the other given side . Therefore, we have a second solution. Find it by following the below steps:

, so is a solution.

Therefore there are two values for an angle,  and 

Example Question #6 : Ambiguous Triangles

If c=10.3a=7.4, and  find  to the nearest degree.

Possible Answers:

 and 

No solution

Correct answer:

No solution

Explanation:

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no  that satisfies the triangle can be found. If  and there is a right triangle determined. Finally, if , two measures of  can be calculated:  an acute  and an obtuse angle . In this case, there may be one or two triangles determined. If , then the  is not a solution.

In this problem, , which means that there are no solutions to  that satisfy this triangle. If you got answers for this triangle, check that you set up your Law of Sines equation properly at the start of the problem. 

Example Question #7 : Ambiguous Triangles

If , and  =  find  to the nearest degree.

Possible Answers:

 and 

No solution

Correct answer:

Explanation:

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no  that satisfies the triangle can be found. If and there is a right triangle determined. Finally, if , two measures of  can be calculated:  an acute  and an obtuse angle . In this case, there may be one or two triangles determined. If , then the  is not a solution.

In this problem,, so there may be one or two angles that satisfy this triangle. Since we have the length of two sides of the triangle and the corresponding angle of one of the sides, we can use the Law of Sines to find the angle that we are looking for. This goes as follows:

Inputting the values of the problem

Rearranging the equation to isolate 

When the original given angle () is acute, there will be:

  • One solution if the side opposite the given angle is equal to or greater than the other given side
  • No solution, one solution (right triangle), or two solutions if the side opposite the given angle is less than the other given side

In this problem, the side opposite the given angle is , which is greater than the other given side . Therefore, we have only one solution, .

Example Question #8 : Ambiguous Triangles

If , and  find  to the nearest degree.

Possible Answers:

No solution

 and

 and 

Correct answer:

Explanation:

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no  that satisfies the triangle can be found. If and there is a right triangle determined. Finally, if , two measures of  can be calculated:  an acute  and an obtuse angle . In this case, there may be one or two triangles determined. If , then the  is not a solution.

In this problem, , so there may be one or two angles that satisfy this triangle. Since we have the length of two sides of the triangle and the corresponding angle of one of the sides, we can use the Law of Sines to find the angle that we are looking for. This goes as follows:

Inputting the values of the problem

Rearranging the equation to isolate 

When the original given angle () is obtuse, there will be:

  • No solution when the side opposite the given angle is less than or equal to the other given side
  • One solution if the side opposite the given angle is greater than the other given side

In this problem, the side opposite the given angle is , which is greater than the other given side . Therefore this problem has one and only one solution, 

Example Question #9 : Ambiguous Triangles

If , and  =  find  to the nearest degree.

Possible Answers:

 and 

No solution

 and 

Correct answer:

No solution

Explanation:

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no  that satisfies the triangle can be found. If and there is a right triangle determined. Finally, if , two measures of  can be calculated:  an acute  and an obtuse angle . In this case, there may be one or two triangles determined. If , then the  is not a solution.

In this problem, , which means that there are no solutions to  that satisfy this triangle. If you got answers for this triangle, check that you set up your Law of Sines equation properly at the start of the problem. 

Example Question #61 : Law Of Cosines And Law Of Sines

If c=70a=50, and  find  to the nearest degree.

Possible Answers:

 and 

 and 

no solution

Correct answer:

no solution

Explanation:

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no  that satisfies the triangle can be found. If  and there is a right triangle determined. Finally, if , two measures of  can be calculated:  an acute  and an obtuse angle . In this case, there may be one or two triangles determined. If , then the  is not a solution.

In this problem, , which means that there are no solutions to  that satisfy this triangle. If you got answers for this triangle, check that you set up your Law of Sines equation properly at the start of the problem. 

Example Question #1 : Finding Angles

 plank has one end on the ground and one end  off the ground. What is the measure of the angle formed by the plank and the ground?

Possible Answers:

Correct answer:

Explanation:

The length of the plank becomes the hypotenuse of the triangle, while the distance between the plank and the ground becomes the length of one side. To solve for the angle between the plank and the ground, you must find the value of . The sine of the angle is the value of the opposite side over the hypotenuse, which are values that we know.

Example Question #102 : Triangles

Two angles in a triangle are  and . What is the measure of the 3rd angle? 

Possible Answers:

There is not enough information to determine the angle measure. 

Correct answer:

Explanation:

The sum of the angles of a triangle is 180˚.

Thus, since the sum of our two angles is 100˚, our missing angle must be,

 

Example Question #101 : Triangles

If the hypotenuse of a right triangle has a length of 6, and the length of a leg is 2, what is the angle between the hypotenuse and the leg?

Possible Answers:

Correct answer:

Explanation:

The leg must be an adjacent side to the hypotenuse.  

Therefore, we can use inverse cosine to solve for the angle.  

First write the equation for sine of an angle.

Substitute the lengths given and solve for the angle.

Example Question #102 : Triangles

A skateboard ramp made so that the rider can gain sufficient speed before a jump is 15 feet high and the ramp is 17 feet long. What is the measure of the angle  between the ramp and the ground?

Possible Answers:

None of the other answers.

Correct answer:

Explanation:

For the angle in question we have the opposite side and the hypotenuse given to us. We can use the sine function.

Use the inverse sin to find the measure of an angle between these sides:

Learning Tools by Varsity Tutors