SSAT Upper Level Math : Acute / Obtuse Triangles

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #171 : Properties Of Triangles

The height of a triangle is \(\displaystyle 14\), and the base is \(\displaystyle 4\). What is the area of the triangle?

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 28\)

\(\displaystyle 56\)

\(\displaystyle 32\)

Correct answer:

\(\displaystyle 28\)

Explanation:

Use the following formula to find the area of a triangle:

\(\displaystyle \text{Area}=\frac{base\times height}{2}\)

Now, substitute in \(\displaystyle 4\) for the base and \(\displaystyle 14\) for the height.

\(\displaystyle \text{Area}=\frac{4\times14}{2}=\frac{56}{2}=28\)

The area of the triangle is \(\displaystyle 28\).

Example Question #172 : Properties Of Triangles

The height of a triangle is \(\displaystyle 10g\), and the base is \(\displaystyle 6g\). In terms of \(\displaystyle g\), what is the area of the triangle?

Possible Answers:

\(\displaystyle 22g\)

\(\displaystyle 40g^2\)

\(\displaystyle 30g^2\)

\(\displaystyle 60g^2\)

Correct answer:

\(\displaystyle 30g^2\)

Explanation:

Use the following formula to find the area of a triangle:

\(\displaystyle \text{Area}=\frac{base\times height}{2}\)

Now, substitute in \(\displaystyle 6g\) for the base and \(\displaystyle 10g\) for the height.

\(\displaystyle \text{Area}=\frac{6g\times10g}{2}=\frac{60g^2}{2}=30g^2\)

The area of the triangle is \(\displaystyle 30g^2\).

Example Question #173 : Properties Of Triangles

The base of a triangle is \(\displaystyle y\) inches, and the height of the triangle is \(\displaystyle 8\) inches. In terms of \(\displaystyle y\), what is the area of the triangle?

Possible Answers:

\(\displaystyle 8y\) \(\displaystyle in^2\)

\(\displaystyle 4y\) \(\displaystyle in^2\)

\(\displaystyle 2y\) \(\displaystyle in^2\)

\(\displaystyle \frac{y}{2}\) \(\displaystyle in^2\)

Correct answer:

\(\displaystyle 4y\) \(\displaystyle in^2\)

Explanation:

Find the area of the triangle by using the formula \(\displaystyle \frac{base\times height}{2}\).

Now, substitute in \(\displaystyle y\) for the base and \(\displaystyle 8\) for the height. 

\(\displaystyle \text{Area}=\frac{y\times8}{2}=\frac{8y}{2}=4y\)

Don't forget to include the units, \(\displaystyle 4y\) \(\displaystyle in^2\)

Example Question #174 : Properties Of Triangles

The base of a triangle is \(\displaystyle 12x\), and the height of the triangle is \(\displaystyle 5\). If the area of the triangle is \(\displaystyle 120\), what is the value of \(\displaystyle x\)?

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 60\)

\(\displaystyle 4\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 4\)

Explanation:

Use the following formula to find the area of a triangle:

\(\displaystyle \text{Area}=\frac{base\times height}{2}\)

Now, substitute in \(\displaystyle 12x\) for the base, \(\displaystyle 5\) for the height, and \(\displaystyle 120\) for the area..

Use algebraic opertions to solve for x.

\(\displaystyle 120=\frac{12x\times5}{2}\)

\(\displaystyle 60x=120\)

\(\displaystyle x=4\)

Example Question #175 : Properties Of Triangles

The height of the triangle is \(\displaystyle 5d\), and the base of the triangle is \(\displaystyle 8\). If the area of the triangle is \(\displaystyle 80\), what is the value of \(\displaystyle d\)?

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 8\)

\(\displaystyle 10\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 4\)

Explanation:

Use the formula for the area of a triangle.

\(\displaystyle \text{Area}=\frac{base \times height}{2}\)

Substitute in \(\displaystyle 8\) for height, \(\displaystyle 5d\) for the base, and \(\displaystyle 80\) for the area.

From here, use algebraic operations to isolate d on one side and all other numbers on the other side.

\(\displaystyle 80=\frac{5d\times 8}{2}\)

\(\displaystyle 40d=160\)

\(\displaystyle d=4\)

Learning Tools by Varsity Tutors