SSAT Middle Level Math : Numbers and Operations

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #7 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{10}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 45\)

\(\displaystyle 95\)

\(\displaystyle 90\)

\(\displaystyle 100\)

Correct answer:

\(\displaystyle 100\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 10\times10=100\)

\(\displaystyle \frac{10}{10}=\frac{100}{100}\)

Example Question #11 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

\(\displaystyle \frac{11}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 111\)

\(\displaystyle 121\)

\(\displaystyle 120\)

\(\displaystyle 110\)

\(\displaystyle 114\)

Correct answer:

\(\displaystyle 110\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 11\times10=110\)

\(\displaystyle \frac{11}{10}=\frac{110}{100}\)

Example Question #12 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

\(\displaystyle \frac{12}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 110\)

\(\displaystyle 80\)

\(\displaystyle 90\)

\(\displaystyle 120\)

Correct answer:

\(\displaystyle 120\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 12\times10=120\)

\(\displaystyle \frac{12}{10}=\frac{120}{100}\)

Example Question #91 : How To Multiply Fractions

\(\displaystyle \frac{4}{3}\times\frac{5}{11}=\)

Possible Answers:

\(\displaystyle \frac{44}{15}\)

\(\displaystyle \frac{660}{33}\)

\(\displaystyle \frac{15}{44}\)

\(\displaystyle \frac{20}{33}\)

\(\displaystyle \frac{59}{33}\)

Correct answer:

\(\displaystyle \frac{20}{33}\)

Explanation:

In order to multiply fractions you simply multiply the numerators together to get the new numerator and multiply the denominators together to get the new denominator. Also simplify fractions in lowest terms when need be. 

\(\displaystyle \frac{4}{3}\times\frac{5}{11}=\frac{4\cdot 5}{3\cdot 11}=\frac{20}{33}\)

Example Question #92 : How To Multiply Fractions

\(\displaystyle \frac{5}{9}\times \frac{6}{13}\)

Possible Answers:

\(\displaystyle \frac{10}{39}\)

\(\displaystyle \frac{9}{11}\)

\(\displaystyle \frac{8}{7}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{45}{123}\)

Correct answer:

\(\displaystyle \frac{10}{39}\)

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\(\displaystyle \frac{5}{9}\times \frac{6}{13}=\frac{30}{117}\)

\(\displaystyle \frac{30}{117}\) can be reduced to \(\displaystyle \frac{10}{39}\) by dividing both sides by \(\displaystyle 3\)

\(\displaystyle \frac{30}{117}\frac{\div}{\div}\frac{3}{3}=\frac{10}{39}\)

Example Question #93 : How To Multiply Fractions

\(\displaystyle \textup{Multiply: }\frac{6}{10}\times\frac{9}{12}\)

Possible Answers:

\(\displaystyle \frac{90}{72}\)

\(\displaystyle \frac{69}{1012}\)

\(\displaystyle \frac{9}{20}\)

\(\displaystyle \frac{72}{90}\)

Correct answer:

\(\displaystyle \frac{9}{20}\)

Explanation:

\(\displaystyle \textup{Multiply: }\frac{6}{10}\times\frac{9}{12}\)

Before multiplying we want to reduce both fractions so we will have smaller numbers which are easier to multiply. 

For the 6/10 , both the top and bottom will reduce by a factor of 2. 

For the 9/12, both the top and bottom will reduce by a factor of 3. 

\(\displaystyle \textup{Multiply: }\frac{3}{5}\times\frac{3}{4}\)

To multiply, we multiply the two numerators (tops) and the two denominators (bottoms). 

\(\displaystyle \frac{3\times 3}{5\times 4}=\frac{9}{20}\)

Example Question #93 : How To Multiply Fractions

\(\displaystyle 3\times\frac{1}{3}\)

Possible Answers:

\(\displaystyle \frac{2}{3}\)

\(\displaystyle \frac{4}{3}=1\frac{1}{3}\)

\(\displaystyle \frac{5}{3}=1\frac{2}{3}\)

\(\displaystyle \frac{1}{3}\)

\(\displaystyle \frac{3}{3}=1\)

Correct answer:

\(\displaystyle \frac{3}{3}=1\)

Explanation:

\(\displaystyle 3\times\frac{1}{3}\) means the same thing as adding \(\displaystyle \frac{1}{3}\) three times.

On our number line, we can make \(\displaystyle 3\) jumps of \(\displaystyle \frac{1}{3}\)

3 3 number line

Example Question #94 : How To Multiply Fractions

\(\displaystyle 4\times\frac{1}{3}=\) 

Possible Answers:

\(\displaystyle \frac{6}{3}=2\)

\(\displaystyle \frac{4}{3}=1\frac{1}{3}\)

\(\displaystyle \frac{1}{3}\)

\(\displaystyle \frac{5}{3}=1\frac{2}{3}\)

\(\displaystyle \frac{2}{3}\)

Correct answer:

\(\displaystyle \frac{4}{3}=1\frac{1}{3}\)

Explanation:

\(\displaystyle 4\times\frac{1}{3}\) means the same thing as adding \(\displaystyle \frac{1}{3}\) four times.

On our number line, we can make \(\displaystyle 4\) jumps of \(\displaystyle \frac{1}{3}\)

4 3 number line

Example Question #2 : Understand A Fraction A/B As A Multiple Of 1/B: Ccss.Math.Content.4.Nf.B.4a

\(\displaystyle 7\times\frac{1}{3}=\) 

Possible Answers:

\(\displaystyle \frac{1}{3}\)

\(\displaystyle \frac{2}{3}\)

\(\displaystyle \frac{5}{3}=1\frac{2}{3}\)

\(\displaystyle \frac{7}{3}=2\frac{1}{3}\)

\(\displaystyle \frac{6}{3}=2\)

Correct answer:

\(\displaystyle \frac{7}{3}=2\frac{1}{3}\)

Explanation:

\(\displaystyle 7\times\frac{1}{3}\) means the same thing as adding \(\displaystyle \frac{1}{3}\) seven times.

On our number line, we can make \(\displaystyle 7\) jumps of \(\displaystyle \frac{1}{3}\)

7 3 number line

Example Question #1091 : Numbers And Operations

\(\displaystyle 3\times\frac{1}{4}=\)

 

Possible Answers:

\(\displaystyle \frac{5}{4}=1\frac{1}{4}\)

\(\displaystyle \frac{3}{4}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{6}{4}=1\frac{2}{4}\)

\(\displaystyle \frac{2}{4}\)

Correct answer:

\(\displaystyle \frac{3}{4}\)

Explanation:

\(\displaystyle 3\times\frac{1}{4}\) means the same thing as adding \(\displaystyle \frac{1}{4}\) three times.

On our number line, we can make \(\displaystyle 3\) jumps of \(\displaystyle \frac{1}{4}\)

3 4 number line

Learning Tools by Varsity Tutors