SSAT Elementary Level Math : How to divide

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #106 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 91\\ 3{\overline{\smash{)}273}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 3\times 97\)

\(\displaystyle 3\times 79\)

\(\displaystyle 3\times 91\)

\(\displaystyle 3\times 93\)

\(\displaystyle 3\times 89\)

Correct answer:

\(\displaystyle 3\times 91\)

Explanation:

The computation shows that \(\displaystyle 273\div3=91\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 91}\\ {\color{Green} 3}{\overline{\smash{)}273}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 3\times91=273+0\)

Simplify.

\(\displaystyle 3\times91=273\)

The correct answer is \(\displaystyle 3\times 91\)

Example Question #401 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 9{\overline{\smash{)}189}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 9\times 27\)

\(\displaystyle 9\times 18\)

\(\displaystyle 9\times 21\)

\(\displaystyle 9\times 23\)

\(\displaystyle 9\times 32\)

Correct answer:

\(\displaystyle 9\times 21\)

Explanation:

The computation shows that \(\displaystyle 189\div9=21\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 9}{\overline{\smash{)}189}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 9\times21=189+0\)

Simplify.

\(\displaystyle 9\times21=189\)

The correct answer is \(\displaystyle 9\times 21\)

Example Question #402 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 9{\overline{\smash{)}279}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 9\times 33\)

\(\displaystyle 9\times 93\)

\(\displaystyle 9\times 36\)

\(\displaystyle 9\times 31\)

\(\displaystyle 3\times 93\)

Correct answer:

\(\displaystyle 9\times 31\)

Explanation:

The computation shows that \(\displaystyle 279\div9=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 9}{\overline{\smash{)}279}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 9\times31=279+0\)

Simplify.

\(\displaystyle 9\times31=279\)

The correct answer is \(\displaystyle 9\times 31\)

Example Question #403 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 7{\overline{\smash{)}147}}\\ -\ 14 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 7\times 31\)

\(\displaystyle 7\times 17\)

\(\displaystyle 7\times 21\)

\(\displaystyle 7\times 41\)

\(\displaystyle 7\times 28\)

Correct answer:

\(\displaystyle 7\times 21\)

Explanation:

The computation shows that \(\displaystyle 147\div7=21\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 7}{\overline{\smash{)}147}}\\ -\ 14 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 7\times21=147+0\)

Simplify.

\(\displaystyle 7\times21=147\)

The correct answer is \(\displaystyle 7\times 21\)

Example Question #403 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 41\\ 7{\overline{\smash{)}287}}\\ -\ 28 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 7\times 31\)

\(\displaystyle 7\times 28\)

\(\displaystyle 7\times 41\)

\(\displaystyle 7\times 32\)

\(\displaystyle 7\times 21\)

Correct answer:

\(\displaystyle 7\times 41\)

Explanation:

The computation shows that \(\displaystyle 287\div7=41\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 41}\\ {\color{Green} 7}{\overline{\smash{)}287}}\\ -\ 28 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 7\times41=287+0\)

Simplify.

\(\displaystyle 7\times41=287\)

The correct answer is \(\displaystyle 7\times 41\)

Example Question #111 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 6{\overline{\smash{)}186}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{6\ \ }\\ -\ \ \ 6\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

 \(\displaystyle 6\times 31\)

 \(\displaystyle 6\times 36\)

 \(\displaystyle 6\times 41\)

 \(\displaystyle 6\times 21\)

 \(\displaystyle 6\times 27\)

Correct answer:

 \(\displaystyle 6\times 31\)

Explanation:

The computation shows that \(\displaystyle 186\div6=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 6}{\overline{\smash{)}186}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 6\ \ }\\ -\ \ \ 6\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 6\times31=186+0\)

Simplify.

\(\displaystyle 6\times31=186\)

The correct answer is \(\displaystyle 6\times 31\)

 

Example Question #112 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 8{\overline{\smash{)}168}}\\ -\ 16 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 8\times 41\)

\(\displaystyle 8\times 11\)

\(\displaystyle 8\times 31\)

\(\displaystyle 8\times 21\)

\(\displaystyle 8\times 27\)

Correct answer:

\(\displaystyle 8\times 21\)

Explanation:

The computation shows that \(\displaystyle 168\div8=21\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 8}{\overline{\smash{)}168}}\\ -\ 16 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 8\times21=168+0\)

Simplify.

\(\displaystyle 8\times21=168\)

The correct answer is \(\displaystyle 8\times 21\)

Example Question #113 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 8{\overline{\smash{)}248}}\\ -\ 24 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 8\times 41\)

\(\displaystyle 8\times 32\)

\(\displaystyle 8\times 21\)

\(\displaystyle 8\times 31\)

\(\displaystyle 8\times 27\)

Correct answer:

\(\displaystyle 8\times 31\)

Explanation:

The computation shows that \(\displaystyle 248\div8=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 8}{\overline{\smash{)}248}}\\ -\ 24 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 8\times31=248+0\)

Simplify.

\(\displaystyle 8\times31=248\)

The correct answer is \(\displaystyle 8\times 31\)

Example Question #114 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 41\\ 8{\overline{\smash{)}328}}\\ -\ 32 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 8\times 38\)

\(\displaystyle 8\times 51\)

\(\displaystyle 8\times 31\)

\(\displaystyle 8\times 27\)

\(\displaystyle 8\times 41\)

Correct answer:

\(\displaystyle 8\times 41\)

Explanation:

The computation shows that \(\displaystyle 328\div8=41\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 41}\\ {\color{Green} 8}{\overline{\smash{)}328}}\\ -\ 32 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 8\times41=328+0\)

Simplify.

\(\displaystyle 8\times41=328\)

The correct answer is \(\displaystyle 8\times 41\)

Example Question #115 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 9{\overline{\smash{)}279}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 9\times 27\)

\(\displaystyle 9\times 31\)

\(\displaystyle 9\times 41\)

\(\displaystyle 9\times 12\)

\(\displaystyle 9\times 21\)

Correct answer:

\(\displaystyle 9\times 31\)

Explanation:

The computation shows that \(\displaystyle 279\div9=31\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 9}{\overline{\smash{)}279}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 9\times31=279+0\)

Simplify.

\(\displaystyle 9\times31=279\)

The correct answer is \(\displaystyle 9\times 31\)

Learning Tools by Varsity Tutors