All SAT Math Resources
Example Questions
Example Question #151 : Solid Geometry
ABC Pipeworks manufactures a 12 foot copper alloy pipe that has an internal diameter of 0.76 inches and an external diameter of 0.88 inches. If two grams of copper are in every 3 cubic inches of pipe material. How many grams of copper are in this pipe?
First convert all units to inches.
internal diameter: 0.76 inches
external diameter: 0.88 inches
length: 144 inches
You are going to need to subtract the interior volume of the empty space inside the pipe from the external volume of the of the pipe.
Now, we need to determine how many grams of copper are in the pipe.
Example Question #851 : Sat Mathematics
Find the volume of the figure.
In order to find the volume of the figure, we will first need to find the volume of both cylinders.
Recall how to find the volume of the cylinder:
Now, use the given radius and height to find the volume of the larger cylinder.
Next, use the given radius and height to find the volume of the smaller cylinder.
Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.
Make sure to round to places after the decimal.
Example Question #113 : Solid Geometry
Find the volume of the figure.
In order to find the volume of the figure, we will first need to find the volume of both cylinders.
Recall how to find the volume of the cylinder:
Now, use the given radius and height to find the volume of the larger cylinder.
Next, use the given radius and height to find the volume of the smaller cylinder.
Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.
Make sure to round to places after the decimal.
Example Question #29 : How To Find The Volume Of A Cylinder
Find the volume of the figure.
In order to find the volume of the figure, we will first need to find the volume of both cylinders.
Recall how to find the volume of the cylinder:
Now, use the given radius and height to find the volume of the larger cylinder.
Next, use the given radius and height to find the volume of the smaller cylinder.
Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.
Make sure to round to places after the decimal.
Example Question #42 : Cylinders
Find the volume of the figure.
In order to find the volume of the figure, we will first need to find the volume of both cylinders.
Recall how to find the volume of the cylinder:
Now, use the given radius and height to find the volume of the larger cylinder.
Next, use the given radius and height to find the volume of the smaller cylinder.
Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.
Make sure to round to places after the decimal.
Example Question #11 : Cylinders
Jessica wishes to fill up a cylinder with water at a rate of gallons per minute. The volume of the cylinder is gallons. The hole at the bottom of the cylinder leaks out gallons per minute. If there are gallons in the cylinder when Jessica starts filling it, how long does it take to fill?
Jessica needs to fill up gallons at the effective rate of . divided by is equal to . Notice how the units work out.
Example Question #31 : How To Find The Volume Of A Cylinder
The figure below represents a cylinder with a smaller cylinder removed from its middle.
Find the volume of the figure.
In order to find the volume of the figure, we will first need to find the volume of both cylinders.
Recall how to find the volume of the cylinder:
Now, use the given radius and height to find the volume of the larger cylinder.
Next, use the given radius and height to find the volume of the smaller cylinder.
Subtract the volume of the smaller cylinder from the volume of the larger one to find the volume of the figure.
Make sure to round to places after the decimal.
Example Question #1 : Cylinders
An upright cylinder with a height of 30 and a radius of 5 is in a big tub being filled with oil. If only the top 10% of the cylinder is visible, what is the surface area of the submerged cylinder?
345π
295π
270π
300π
325π
295π
The height of the submerged part of the cylinder is 27cm. 2πrh + πr2 is equal to 270π + 25π = 295π
Example Question #1 : Cylinders
A right circular cylinder has a height of 41 in. and a lateral area (excluding top and bottom) 512.5π in2. What is the area of its bases?
None of the other answers
312.5 in2
78.125π in2
156.25 in2
39.0625π in2
78.125π in2
The lateral area (not including its bases) is equal to the circumference of the base times the height of the cylinder. Think of it like a label that is wrapped around a soup can. Therefore, we can write this area as:
A = h * π * d or A = h * π * 2r = 2πrh
Now, substituting in our values, we get:
512.5π = 2 * 41*rπ; 512.5π = 82rπ
Solve for r by dividing both sides by 82π:
6.25 = r
From here, we can calculate the area of a base:
A = 6.252π = 39.0625π
NOTE: The question asks for the area of the bases. Therefore, the answer is 2 * 39.0625π or 78.125π in2.
Example Question #1 : How To Find The Surface Area Of A Cylinder
The diameter of the lid of a right cylindrical soup can is 5 in. If the can is 12 inches tall and the label costs $0.00125 per square inch to print, what is the cost to produce a label for a can? (Round to the nearest cent.)
$0.16
$0.24
$1.18
$0.08
$0.29
$0.24
The general mechanics of this problem are simple. The lateral area of a right cylinder (excluding its top and bottom) is equal to the circumference of the top times the height of the cylinder. Therefore, the area of this can's surface is: 5π * 12 or 60π. If the cost per square inch is $0.00125, a single label will cost 0.00125 * 60π or $0.075π or approximately $0.24.