All SAT Math Resources
Example Questions
Example Question #42 : Algebraic Fractions
A school's tornado shelter has enough food to last 20 children for 6 days. If 24 children ended up taking shelter together, for how many fewer days will the food last?
4
8
2
1
6
1
Because the number of days goes down as the number of children goes up, this problem type is inverse variation. We can solve this problem by the following steps:
20*6=24*x
120=24x
x=120/24
x=5
In this equation, x represents the total number of days that can be weathered by 24 students. This is down from the 6 days that 20 students could take shelter together. So the difference is 1 day less.
Example Question #1 : Algebraic Fractions
Find the inverse equation of:
To solve for an inverse, we switch x and y and solve for y. Doing so yields:
Example Question #2 : Algebraic Fractions
Find the inverse equation of .
1. Switch the and variables in the above equation.
2. Solve for :
Example Question #3 : Algebraic Fractions
When , .
When , .
If varies inversely with , what is the value of when ?
If varies inversely with , .
1. Using any of the two combinations given, solve for :
Using :
2. Use your new equation and solve when :
Example Question #4 : Algebraic Fractions
x |
y |
If varies inversely with , what is the value of ?
An inverse variation is a function in the form: or , where is not equal to 0.
Substitute each in .
Therefore, the constant of variation, , must equal 24. If varies inversely as , must equal 24. Solve for .
Example Question #1 : How To Find Excluded Values
Which of the following are answers to the equation below?
I. -3
II. -2
III. 2
I only
III only
II only
II and III
I, II, and III
III only
Given a fractional algebraic equation with variables in the numerator and denominator of one side and the other side equal to zero, we rely on a simple concept. Zero divided by anything equals zero. That means we can focus in on what values make the numerator (the top part of the fraction) zero, or in other words,
The expression is a difference of squares that can be factored as
Solving this for gives either or . That means either of these values will make our numerator equal zero. We might be tempted to conclude that both are valid answers. However, our statement earlier that zero divided by anything is zero has one caveat. We can never divide by zero itself. That means that any values that make our denominator zero must be rejected. Therefore we must also look at the denominator.
The left side factors as follows
This means that if is or , we end up dividing by zero. That means that cannot be a valid solution, leaving as the only valid answer. Therefore only #3 is correct.
Example Question #1 : How To Find Excluded Values
Which of the following provides the complete solution set for ?
No solutions
The absolute value will always be positive or 0, therefore all values of z will create a true statement as long as . Thus all values except for 2 will work.
Example Question #891 : Algebra
If the average (arithmetic mean) of , , and is , what is the average of , , and ?
There is not enough information to determine the answer.
If we can find the sum of , , and 10, we can determine their average. There is not enough information to solve for or individually, but we can find their sum, .
Write out the average formula for the original three quantities. Remember, adding together and dividing by the number of quantities gives the average:
Isolate :
Write out the average formula for the new three quantities:
Combine the integers in the numerator:
Replace with 27:
Example Question #3 : How To Find Excluded Values
Find the excluded values of the following algebraic fraction
The numerator cancels all the binomials in the denomniator so ther are no excluded values.
To find the excluded values of a algebraic fraction you need to find when the denominator is zero. To find when the denominator is zero you need to factor it. This denominator factors into
so this is zero when x=4,7 so our answer is
Example Question #2 : How To Find Excluded Values
For what value(s) of x is the function undefined?
When the denominator of a function is equal to 0, the function is undefined at that point. We can set x2-25 equal to 0 in order to find out what values of x make that true.
We can factor to solve for x.
is an incorrect answer because for this value of x, the function equals zero, but it is not undefined.