All SAT Math Resources
Example Questions
Example Question #1361 : Sat Mathematics
Solve:
First reduce the fraction. We can divide both the numerator and the denominator by 3.
Now our expression looks like this:
When you add or subtract fractions, you need to have the same denominator. The lowest common deonminator here is 2. So we need to multiply and solve:
Example Question #1 : Complex Fractions
Add:
To add , first simply each term by rewriting the terms using a division sign.
Take the reciprocal of the terms after the division sign, and change the division sign to a multiplication sign. Simplify.
Example Question #3 : Complex Fractions
Add:
The terms shown are complex fractions. We first need to simplify each and find the least common denominator before solving.
Rewrite the complex fraction using a division sign.
Change the division sign to a multiplication sign, and take the reciprocal of the second term.
Repeat this step for the second term.
Add the two terms together.
The answer is:
Example Question #1 : Proportion / Ratio / Rate
A cafeteria with 40 tables can sit 600 people. Some tables can sit 10 people and some can sit 20 people. What is the ratio of the number of 10-person tables to the number of 20-person tables?
4:1
1:2
2:1
1:1
1:4
1:1
Let x be the number of 10-person tables, and y be the number of 20-person tables. Since there are 40 tables in the cafeteria, x + y = 40. 10x represents the number of people sitting at 10-person tables, and 20y represents the number of people sitting at 20-person tables. Since the cafeteria can seat 600 people, 10x + 20y = 600. Now we have 2 equations and 2 unknowns, and can solve the system. To do this, multiply the first equation by 10 and subtract it from the second equation. This yields 0x + 10y = 200; solving for y tells us there are 20 tables that seat 20 people. Since x + y = 40, x = 20, so there are 20 tables that seat 10 people. The ratio of x:y is therefore 1:1.
Example Question #1 : Proportion / Ratio / Rate
The first term in a sequence is m. If every term thereafter is 5 greater than 1/10 of the preceding term, and m≠0, what is the ratio of the second term to the first term?
(m+10)/5
(m+50)/10m
(m+10)/50m
(m+5)/10
(m+50)/10m
The first term is m, so the second term is m/10+5 or (m+50)/10. When we take the ratio of the second term to the first term, we get (((m+50)/10))/m, which is ((m+50)/10)(1/m), or (m+50)/10m.
Example Question #1 : How To Find A Ratio
Two cars were traveling 630 miles. Car A traveled an average speed of 70 miles per hour. If car B traveled 90 miles an hour, how many miles had car A traveled when car B arrived at the destination?
630
700
140
490
490
We first divide 630 miles by 90 miles per hour to get the amount of time it took car B to reach the destination, giving us 7 hours. We then multiply 7 hours by car A’s average speed and we get 490 miles.
Example Question #1 : Proportion / Ratio / Rate
STUDENT ATHLETES WHO USE STEROIDS |
|||
|
MEN |
WOMEN |
TOTAL |
BASKETBALL |
A |
B |
C |
SOCCER |
D |
E |
F |
TOTAL |
G |
H |
I |
In the table above, each letter represents the number of students in each category. Which of the following must be equal to I?
G+H
A+D
A+D+G
A+B
G+H
Since G is the total number of male athletes that use steroids and H is the total number of female athletes that use steroids, the sum of the two is equal to I, which is the total number of all students using steroids.
Example Question #1 : Proportion / Ratio / Rate
A particular ball always bounces back to 2/5 of the height of its previous bounce after being dropped. After the first bounce it reaches a height of 175 inches. Approximately how high (in inches) will it reach after its fifth bounce?
4.5
20
14
11.2
4.5
The first bounce reaches a height of 175. The second bounce will equal 175 multiplied by 2/5 or 70. Repeat this process. You will get the data below. 4.48 is rounded to 4.5.
Example Question #2 : Proportion / Ratio / Rate
The flow of water through a certain pipe is 20 cubic meters per minute. How many minutes would it take for 4 of such pipes to fill 2 tanks, if each tank is a cube with a side length of 20 m?
200
40
20
100
50
200
The flow of water through one pipe is 20 m3 / minute.
Thus, the flow of water through 4 pipes is 80 m3 / minute.
Since each tank is a cube with a side length of 20m, the volume of each tank is:
Volume of one tank = (20 m)3 = 8000 m3.
The total volume of two tanks is 2 * 8000 m3 = 16,000 m3
Therefore, the total minutes for 4 pipes to fill 2 tanks is:
16,000 m3/(80 m3/min) = 200 minutes
80 m3/min
Example Question #1 : Proportion / Ratio / Rate
You are planning a party. The maximum number of people the reception hall can hold is 1 person for every 5 square feet of space. If the hall is 60 feet wide and 50 feet long, how many people can you invite?
600
1500
2500
500
3000
600
Total area of hall = 60ft * 50ft = 3000 ft2
At 1 person per 5 square feet, 3000 ft2 / 5 ft2 per person = 600 people