SAT Math : How to find the angle of a sector

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #21 : Sectors

Inscribed quad

Figure NOT drawn to scale.

The above figure shows a quadrilateral inscribed in a circle. Evaluate \displaystyle u.

Possible Answers:

\displaystyle u= 88

\displaystyle u= 102

\displaystyle u= 92

The question cannot be answered from the information given. 

\displaystyle u= 96

Correct answer:

\displaystyle u= 92

Explanation:

If a quadrilateral is inscribed in a circle, then each pair of its opposite angles are supplementary - that is, their degree measures total \displaystyle 180^{\circ }.

\displaystyle \angle B and \displaystyle \angle D are two such angles, so 

\displaystyle m \angle B + m \angle D = 180 ^{\circ }

Setting \displaystyle m \angle B = 88^{\circ } and \displaystyle m \angle D =u ^{\circ }, and solving for \displaystyle u:

\displaystyle 88+ u = 180

\displaystyle 88+ u - 88 = 180 - 88

\displaystyle u= 92,

the correct response.

Example Question #31 : Circles

Inscribed quad

Figure NOT drawn to scale.

The above figure shows a quadrilateral inscribed in a circle. Evaluate \displaystyle t.

Possible Answers:

\displaystyle 73

\displaystyle 78

\displaystyle 83

The question cannot be answered from the information given. 

\displaystyle 88

Correct answer:

The question cannot be answered from the information given. 

Explanation:

If a quadrilateral is inscribed in a circle, then each pair of its opposite angles are supplementary - that is, their degree measures total \displaystyle 180^{\circ }.

\displaystyle \angle A and \displaystyle \angle C are two such angles, so 

\displaystyle m \angle A + m \angle C= 180 ^{\circ }

Setting \displaystyle m \angle A = t^{\circ } and \displaystyle m \angle C = (180-t)^{\circ }, and solving for \displaystyle t:

\displaystyle t + (180-t)= 180

\displaystyle 180+t-t= 180

\displaystyle 180= 180,

The statement turns out to be true regardless of the value of \displaystyle t. Therefore, without further information, the value of \displaystyle t cannot be determined.

Example Question #11 : How To Find The Angle Of A Sector

Inscribed quad

Figure NOT drawn to scale.

The above figure shows a quadrilateral inscribed in a circle. Evaluate \displaystyle t.

Possible Answers:

\displaystyle t= 84

\displaystyle t = 86

\displaystyle t= 78

\displaystyle t = 80

\displaystyle t = 82

Correct answer:

\displaystyle t= 84

Explanation:

If a quadrilateral is inscribed in a circle, then each pair of its opposite angles are supplementary - that is, their degree measures total \displaystyle 180^{\circ }.

\displaystyle \angle A and \displaystyle \angle C are two such angles, so 

\displaystyle m \angle A + m \angle C= 180 ^{\circ }

Setting \displaystyle m \angle A = t^{\circ } and \displaystyle m \angle C = (t+12)^{\circ }, and solving for \displaystyle t:

\displaystyle t + (t+12 )= 180

\displaystyle 2t +12 = 180

\displaystyle 2t +12 - 12 = 180 - 12

\displaystyle 2t = 168

\displaystyle 2t \div 2 = 168 \div 2

\displaystyle t = 84,

the correct response.

Example Question #11 : How To Find The Angle Of A Sector

Secant 2

Figure NOT drawn to scale.

Refer to the above diagram. \displaystyle \overline{AB} is a diameter. Evaluate \displaystyle m \angle CBA

Possible Answers:

\displaystyle 28^{\circ }

\displaystyle 62^{\circ }

\displaystyle 45^{\circ }

\displaystyle 31^{\circ }

\displaystyle 56^{\circ }

Correct answer:

\displaystyle 31^{\circ }

Explanation:

 \displaystyle \overline{AB} is a diameter, so \displaystyle \overarc{ACB} is a semicircle - therefore, \displaystyle m \overarc{ACB} = 180 ^{\circ }. By the Arc Addition Principle,

\displaystyle m \overarc{AC}+ m \overarc{CB} = 180 ^{\circ }

If we let \displaystyle t ^{\circ }= m \overarc{AC}, then

\displaystyle t ^{\circ }+ m \overarc{CB} = 180 ^{\circ },

and

\displaystyle m \overarc{CB} = (180 -t )^{\circ }

If a secant and a tangent are drawn from a point to a circle, the measure of the angle they form is half the difference of the measures of the intercepted arcs. Since \displaystyle \overline{NC} and \displaystyle \overline{NB} are such segments intercepting \displaystyle \overarc{AC} and \displaystyle \overarc{CB}, it holds that

\displaystyle \frac{1}{2}\left ( m \overarc{CB}- m \overarc{AC} \right ) = m \angle CNB

Setting \displaystyle m \overarc{AC} = t ^{\circ }\displaystyle m \overarc{CB} = (180 -t )^{\circ }, and \displaystyle m \angle CNB = 28 ^{\circ }:

\displaystyle \frac{1}{2} [ \left ( 180-t \right ) - t ] = 28

\displaystyle \frac{1}{2} \left ( 180-2 t \right ) = 28

\displaystyle 90-t = 28

\displaystyle 90-t + t - 28 = 28 + t - 28

\displaystyle 62 = t

\displaystyle m \overarc{AC} =62^{\circ }

The inscribed angle that intercepts this arc, \displaystyle \angle CBA, has half this measure:

\displaystyle m \angle CBA = \frac{1}{2} \cdot m \overarc{AC} = \frac{1}{2} \cdot 62^{\circ } = 31^{\circ }.

This is the correct response.

Example Question #12 : How To Find The Angle Of A Sector

Secant 3Figure NOT drawn to scale.

In the above figure, \displaystyle \overline{AB} is a diameter. Also, the ratio of the length of \displaystyle \overarc{BT} to that of \displaystyle \overarc{AT} is 7 to 5. Give the measure of \displaystyle \angle TNA

Possible Answers:

\displaystyle 21 ^{\circ }

\displaystyle 15^{\circ }

\displaystyle 24 ^{\circ }

\displaystyle 18^{\circ }

The measure of \displaystyle \angle TNA cannot be determine from the information given.

Correct answer:

\displaystyle 15^{\circ }

Explanation:

\displaystyle \overline{AB} is a diameter, so \displaystyle \overarc {ATB} is a semicircle, which has measure \displaystyle 180 ^{\circ }. By the Arc Addition Principle,

\displaystyle m \overarc {AT } + m \overarc {BT} = m \overarc {ATB}

If we let \displaystyle t ^{\circ }= m \overarc {AT }, then, substituting:

\displaystyle t ^{\circ }+ m \overarc {BT} = 180 ^{\circ },

and

\displaystyle m \overarc {BT} =( 180 - t ) ^{\circ }

the ratio of the length of \displaystyle \overarc{BT} to that of \displaystyle \overarc{AT} is 7 to 5; this is also the ratio of their degree measures; that is,

\displaystyle \frac{m \overarc{BT}}{m \overarc{AT}} = \frac{5}{3}

Setting \displaystyle m \overarc {AT } = t ^{\circ } and \displaystyle m \overarc {BT} =( 180 - t ) ^{\circ }:

\displaystyle \frac{180-t }{t} = \frac{7}{5}

Cross-multiply, then solve for \displaystyle t:

\displaystyle 7t = 5 (180-t)

\displaystyle 7t = 900 - 5t

\displaystyle 7t + 5t = 900 - 5t + 5t

\displaystyle 12t = 900

\displaystyle \frac{12t }{12}= \frac{900}{12}

\displaystyle t = 75

\displaystyle m \overarc {AT } =75^{\circ }, and \displaystyle m \overarc {BT} =( 180 -75 ) ^{\circ } = 105 ^{\circ }

If a secant and a tangent are drawn from a point to a circle, the measure of the angle they form is half the difference of the measures of the intercepted arcs. Since \displaystyle \overline{NB} and \displaystyle \overline{NT} are such segments whose angle \displaystyle \angle TNA intercepts \displaystyle \overarc{AT} and \displaystyle \overarc{BT}, it holds that:

\displaystyle m \angle TNA = \frac{1}{2}\left ( m \overarc{BT}- m \overarc{AT} \right )

\displaystyle m \angle TNA = \frac{1}{2}\left ( 105 ^{\circ } - 75^{\circ } \right )

\displaystyle m \angle TNA = \frac{1}{2}\left ( 30 ^{\circ } \right )

\displaystyle m \angle TNA = 15^{\circ }

Learning Tools by Varsity Tutors