SAT Math : Simplifying Expressions

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #71 : How To Simplify An Expression

.

Which of the following is equal to ?

Possible Answers:

Correct answer:

Explanation:

Take the reciprocal of both expressions:

Subtract 5 from both sides:

Rewrite the expression at left and simplify it:

Take the reciprocal of both expressions:

Example Question #2602 : Sat Mathematics

Which of the following is equal to  ?

Possible Answers:

Correct answer:

Explanation:

Square both expressions

Subtract 8 from both sides:

Take the positive square root of both sides:

Example Question #143 : Expressions

 for .

Which of the following is equal to  ?

Possible Answers:

Correct answer:

Explanation:

Square both expressions

Add 6 to both sides:

Take the square root of both sides:

Example Question #144 : Expressions

 is a positive number.

Which of the following is equal to ?

Possible Answers:

None of the other choices gives the correct response.

Correct answer:

Explanation:

, so, taking the square root of both sides:

 is positive, so  is as well; therefore, 

Add 4 to both sides:

Square both sides, and apply the binomial square pattern to the right expression:

Example Question #145 : Expressions

.

Which of the following is equal to ?

Possible Answers:

Correct answer:

Explanation:

Take the reciprocal of both expressions:

Add 4 to both sides:

Rewrite the expression at left and simplify it:

Take the reciprocal of both expressions:

Example Question #3 : How To Simplify Expressions

Simplify the following expression: x3 - 4(x2 + 3) + 15

Possible Answers:

Correct answer:

Explanation:

To simplify this expression, you must combine like terms. You should first use the distributive property and multiply -4 by x2 and -4 by 3.

x3 - 4x2 -12 + 15

You can then add -12 and 15, which equals 3.

You now have x3 - 4x2 + 3 and are finished. Just a reminder that x3 and 4x2 are not like terms as the x’s have different exponents.

Learning Tools by Varsity Tutors