SAT Math : Squaring / Square Roots / Radicals

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Complex Numbers

From \displaystyle \frac{3}{2} + \frac{1}{4} i, subtract its complex conjugate. What is the difference ?

Possible Answers:

\displaystyle -3

\displaystyle \frac{1}{2} i

\displaystyle \frac{7}{4} + \frac{7}{4} i

\displaystyle 3

\displaystyle -\frac{1}{2} i

Correct answer:

\displaystyle \frac{1}{2} i

Explanation:

The complex conjugate of a complex number \displaystyle a+bi is \displaystyle a - bi, so \displaystyle \frac{3}{2} + \frac{1}{4} i has \displaystyle \frac{3}{2} - \frac{1}{4} i as its complex conjugate. Subtract the latter from the former:

\displaystyle \left (\frac{3}{2} + \frac{1}{4} i \right ) - \left ( \frac{3}{2} - \frac{1}{4} i \right )

\displaystyle = \frac{3}{2} + \frac{1}{4} i - \frac{3}{2}+ \frac{1}{4} i

\displaystyle = \frac{3}{2}- \frac{3}{2} + \frac{1}{4} i + \frac{1}{4} i

\displaystyle = \frac{1}{2} i

Example Question #1 : Complex Numbers

From \displaystyle 17 - i \sqrt{17}, subtract its complex conjugate.

Possible Answers:

\displaystyle - 2 i \sqrt{17}

\displaystyle 2 i \sqrt{17}

\displaystyle 0

\displaystyle 34

\displaystyle -34

Correct answer:

\displaystyle - 2 i \sqrt{17}

Explanation:

The complex conjugate of a complex number \displaystyle a - bi is \displaystyle a+ bi. Therefore, the complex conjugate of \displaystyle 17 - i \sqrt{17} is \displaystyle 17 + i \sqrt{17}; subtract the latter from the former by subtracting real parts and subtracting imaginary parts, as follows:

\displaystyle (17 - i \sqrt{17})- (17 + i \sqrt{17})

\displaystyle = 17 - i \sqrt{17} - 17 - i \sqrt{17}

\displaystyle = 17 - 17 - i \sqrt{17} - i \sqrt{17}

\displaystyle = - 2 i \sqrt{17}

Example Question #1 : Complex Numbers

From \displaystyle 7 + i \sqrt {7 }, subtract its complex conjugate.

Possible Answers:

\displaystyle 0

\displaystyle -2i \sqrt {7 }

\displaystyle -14

\displaystyle 14

\displaystyle 2i \sqrt {7 }

Correct answer:

\displaystyle 2i \sqrt {7 }

Explanation:

The complex conjugate of a complex number \displaystyle a+ bi is \displaystyle a - bi. Therefore, the complex conjugate of \displaystyle 7 + i \sqrt {7 } is \displaystyle 7 - i \sqrt {7 }; subtract the latter from the former by subtracting real parts and subtracting imaginary parts, as follows:

\displaystyle (7 + i \sqrt {7 })- (7 - i \sqrt {7 })

\displaystyle = 7- 7 + i \sqrt {7 }- (- i \sqrt {7 })

\displaystyle = i \sqrt {7 }+ i \sqrt {7 }

\displaystyle =2i \sqrt {7 }

Example Question #1 : Complex Numbers

Simplify:  \displaystyle \sqrt{-3}+\sqrt{-9}+\sqrt{-16}

Possible Answers:

\displaystyle 2i\sqrt7

\displaystyle i\sqrt3 +i

\displaystyle i\sqrt3 -7i

\displaystyle i\sqrt3-i

\displaystyle i\sqrt3 +7i

Correct answer:

\displaystyle i\sqrt3 +7i

Explanation:

Rewrite \displaystyle \sqrt{-3}+\sqrt{-9}+\sqrt{-16} in their imaginary terms.

\displaystyle i=\sqrt{-1}

\displaystyle \sqrt{-3}+\sqrt{-9}+\sqrt{-16}=i\sqrt3+3i+4i = i\sqrt3 +7i

Example Question #3 : New Sat Math No Calculator

Add \displaystyle 5 + i \sqrt {5 } and its complex conjugate.

Possible Answers:

\displaystyle -10

\displaystyle 10

\displaystyle 2 i \sqrt{5}

\displaystyle -2 i \sqrt{5}

\displaystyle 0

Correct answer:

\displaystyle 10

Explanation:

The complex conjugate of a complex number \displaystyle a+ bi is \displaystyle a - bi. Therefore, the complex conjugate of \displaystyle 5 + i \sqrt {5 } is \displaystyle 5 - i \sqrt {5 }; add them by adding real parts and adding imaginary parts, as follows:

\displaystyle (5 + i \sqrt {5 } )+( 5 - i \sqrt {5 })

\displaystyle = 5 + 5 + i \sqrt {5 } - i \sqrt {5 }

\displaystyle = 10,

the correct response.

Example Question #3 : Complex Numbers

Add \displaystyle 13 - i \sqrt{13} to its complex conjugate.

Possible Answers:

\displaystyle 0

\displaystyle -26

\displaystyle 26

\displaystyle 2i \sqrt{13}

\displaystyle -2i \sqrt{13}

Correct answer:

\displaystyle 26

Explanation:

The complex conjugate of a complex number \displaystyle a - bi is \displaystyle a+ bi. Therefore, the complex conjugate of \displaystyle 13 - i \sqrt{13} is \displaystyle 13 + i \sqrt{13}; add them by adding real parts and adding imaginary parts, as follows:

\displaystyle (13 - i \sqrt{13} )+( 13 + i \sqrt{13})

\displaystyle (13 - i \sqrt{13} )+( 13 + i \sqrt{13})

\displaystyle = 13+13 - i \sqrt {13 }+ i \sqrt {13}

\displaystyle = 26

Example Question #2 : Complex Numbers

An arithmetic sequence begins as follows:

\displaystyle 3, 3i, ...

Give the next term of the sequence 

Possible Answers:

\displaystyle -3

\displaystyle 3+ 6i

\displaystyle -9

\displaystyle 3- 6i

\displaystyle -3 + 6i

Correct answer:

\displaystyle -3 + 6i

Explanation:

The common difference \displaystyle d of an arithmetic sequence can be found by subtracting the first term from the second:

\displaystyle d = a_{2} - a_{1}

\displaystyle d = 3i - 3 = -3 + 3i

Add this to the second term to obtain the desired third term:

\displaystyle a_{3} = a_{2} +d = 3i + ( -3 + 3i) = -3 + 3i + 3i = -3 + 6i.

Example Question #1 : Complex Numbers

Simplify: \displaystyle (3+5i)+(4-2i)+(-2+i)

Possible Answers:

\displaystyle 5+4i

\displaystyle 5-4i

\displaystyle 9+8i

\displaystyle 9-8i

\displaystyle 10-9i

Correct answer:

\displaystyle 5+4i

Explanation:

It can be easier to line real and imaginary parts vertically to keep things organized, but in essence, combine like terms (where 'like' here means real or imaginary):

\displaystyle (3+5i)+(4-2i)+(-2+i)

\displaystyle =3+4+(-2)+5i+(-2i)+i

\displaystyle =5+4i

Example Question #1 : Complex Numbers

For \displaystyle i=\sqrt{-1}, what is the sum of \displaystyle \frac{3}{2} + \frac{1}{4} i and its complex conjugate?

Possible Answers:

\displaystyle \frac{7}{4} + \frac{7}{4} i

\displaystyle -\frac{1}{2} i

\displaystyle \frac{1}{2} i

\displaystyle -3

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

The complex conjugate of a complex number \displaystyle a+bi is \displaystyle a - bi, so \displaystyle \frac{3}{2} + \frac{1}{4} i has \displaystyle \frac{3}{2} - \frac{1}{4} i as its complex conjugate. The sum of the two numbers is

\displaystyle \left (\frac{3}{2} + \frac{1}{4} i \right ) + \left ( \frac{3}{2} - \frac{1}{4} i \right )

\displaystyle = \frac{3}{2} + \frac{1}{4} i + \frac{3}{2} - \frac{1}{4} i

\displaystyle = \frac{3}{2} + \frac{3}{2} + \frac{1}{4} i - \frac{1}{4} i

\displaystyle =3

Example Question #4 : Complex Numbers

Evaluate: 

\displaystyle 9i^{9}+ 10 i^{10}+ 11 i^{11}+ 12 i^{12}

Possible Answers:

\displaystyle 2 - 2i

\displaystyle -2 - 2i

\displaystyle 2 +2i

None of these

\displaystyle -2+ 2i

Correct answer:

\displaystyle 2 - 2i

Explanation:

A power of \displaystyle i can be evaluated by dividing the exponent by 4 and noting the remainder. The power is determined according to the following table:

\displaystyle \begin{matrix} \textrm{\underline{Rem}}& \textrm{\underline{Power}} \\ 0& 1\\ 1& i\\ 2& -1\\ 3& -i \end{matrix}

\displaystyle 9 \div 4 = 2 \textrm{ R }1, so \displaystyle i^{9} = i

\displaystyle 10 \div 4 = 2 \textrm{ R }2, so \displaystyle i^{10} = -1

\displaystyle 11 \div 4 = 2 \textrm{ R }3, so \displaystyle i^{11} = - i

\displaystyle 12 \div 4 = 3 \textrm{ R }0, so \displaystyle i^{12} = 1

Substituting:

\displaystyle 9i^{9}+ 10 i^{10}+ 11 i^{11}+ 12 i^{12}

\displaystyle = 9(i) + 10 (-1)+ 11 (-i)+ 12 (1)

\displaystyle = 9i - 10 - 11i+ 12

Collect real and imaginary terms:

\displaystyle - 10 + 12 + 9i - 11i

\displaystyle = 2 - 2i

Learning Tools by Varsity Tutors