SAT Math : Squaring / Square Roots / Radicals

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #31 : Squaring / Square Roots / Radicals

\displaystyle x^{4}-1 has 4 roots, including the complex numbers.  Take the product of \displaystyle \left ( 5+2i \right ) with each of these roots.  Take the sum of these 4 results.  Which of the following is equal to this sum?

Possible Answers:

\displaystyle 0

\displaystyle 10i

\displaystyle 4-10i

The correct answer is not listed.

\displaystyle 3+7i

Correct answer:

\displaystyle 0

Explanation:

\displaystyle x^{4}-1=\left ( x^{2} -1\right )\left ( x^{2}+1 \right )=\left ( x+1 \right )\left ( x-1 \right )\left ( x-i \right )\left ( x+i \right )

This gives us roots of 

\displaystyle 1,\ -1,\ i,\ -i 

The product of \displaystyle \left ( 5+2i \right ) with each of these gives us:

\displaystyle (5+2i)\cdot i = 5i + 2i^2 = 5i +2(-1) = 5i-2 = -2 + 5i

\displaystyle (5+2i)\cdot (-i) = -5i -2i^2 = -5i -2(-1) = -5i +2 = 2-5i

\displaystyle (5+2i)\cdot 1 = 5+2i

\displaystyle (5+2i)\cdot (-1) = -5 -2i

The sum of these 4 is:

\displaystyle [(-2+5i) + (2-5i)] + [(5+2i) + (-5-2i)] =

\displaystyle =[(-2)+2 +5i - 5i] + [5-5 + 2i - 2i] = [0] + [0] = 0

 

What we notice is that each of the roots has a negative.  It thus makes sense that they will all cancel out.  Rather than going through all the multiplication, we can instead look at the very beginning setup, which we can simplify using the distributive property:

\displaystyle 1(5+2i) + (-1)\cdot(5+2i)+ i(5+2i)+(-i) \cdot(5+2i) = (5+2i)\cdot[1+(-1)+i+(-i)]

\displaystyle = (5+2i)\cdot[0] = 0

Example Question #2 : How To Multiply Complex Numbers

Simplify:

\displaystyle (3i)^{6}

Possible Answers:

\displaystyle 729 i

None of the other responses gives the correct answer.

\displaystyle -729 i

\displaystyle -729

\displaystyle 729

Correct answer:

\displaystyle -729

Explanation:

Apply the Power of a Product Property:

\displaystyle (3i)^{6} = 3 ^{6} \cdot i^{6} = 729 \cdot i^{6}

A power of \displaystyle i can be found by dividing the exponent by 4 and noting the remainder. 6 divided by 4 is equal to 1, with remainder 2, so 

\displaystyle i^{6} = i^{2} = -1

Substituting, 

\displaystyle (3i)^{6} = 729 \cdot (-1) = -729.

Example Question #3 : How To Multiply Complex Numbers

Multiply \displaystyle 3 + i \sqrt {3 } by its complex conjugate.

Possible Answers:

\displaystyle 12

None of the other responses gives the correct answer.

\displaystyle -6

\displaystyle -12

\displaystyle 6

Correct answer:

\displaystyle 12

Explanation:

The complex conjugate of a complex number \displaystyle a+ bi is \displaystyle a - bi. The product of the two is the number 

\displaystyle a^{2}+b^{2}.

Therefore, the product of \displaystyle 3 + i \sqrt {3 } and its complex conjugate \displaystyle 3 - i \sqrt {3 } can be found by setting \displaystyle a = 3 and \displaystyle b = \sqrt{3} in this pattern:

\displaystyle a^{2}+b^{2} = 3^{2}+ (\sqrt{3})^{2} = 9 + 3 = 12,

the correct response.

Example Question #4 : How To Multiply Complex Numbers

Multiply \displaystyle 11 - i \sqrt{11} by its complex conjugate.

Possible Answers:

\displaystyle 110i

\displaystyle 132

\displaystyle 132 i

\displaystyle 110

\displaystyle 1

Correct answer:

\displaystyle 132

Explanation:

The complex conjugate of a complex number \displaystyle a - bi is \displaystyle a+ bi. The product of the two is the number 

\displaystyle a^{2}+b^{2}.

Therefore, the product of \displaystyle 11 - i \sqrt{11} and its complex conjugate \displaystyle 11 + i \sqrt{11} can be found by setting \displaystyle a = 11 and \displaystyle b = \sqrt{11} in this pattern:

\displaystyle a^{2}+b^{2} = 11^{2}+ (\sqrt{11})^{2} = 121+11 = 132,

the correct response.

Example Question #5 : How To Multiply Complex Numbers

What is the product of \displaystyle \frac{3}{2}+ \frac{1}{4} i and its complex conjugate?

Possible Answers:

\displaystyle \frac{35}{16}

\displaystyle -\frac{35}{16}

\displaystyle -\frac{35}{16} i

The correct response is not among the other choices.

\displaystyle \frac{35}{16} i

Correct answer:

The correct response is not among the other choices.

Explanation:

The complex conjugate of a complex number \displaystyle a+bi is \displaystyle a - bi, so \displaystyle \frac{3}{2} + \frac{1}{4} i has \displaystyle \frac{3}{2} - \frac{1}{4} i as its complex conjugate. 

The product of \displaystyle a+bi and \displaystyle a - bi is equal to \displaystyle a^{2}+ b^{2}, so set \displaystyle a = \frac{3}{2} , b= \frac{1}{4} in this expression, and evaluate:

\displaystyle a^{2}+ b^{2} = \left ( \frac{3}{2} \right )^{2} + \left (\frac{1}{4} \right )^{2} = \frac{9}{4} + \frac{1}{16} = \frac{37}{16}.

This is not among the given responses.

Example Question #31 : Squaring / Square Roots / Radicals

Multiply and simplify:

\displaystyle \sqrt{-35} \cdot \sqrt{-5}

Possible Answers:

None of the other choices gives the correct response.

\displaystyle -5i \sqrt{7}

\displaystyle -7i \sqrt{5}

\displaystyle 7i \sqrt{5}

\displaystyle 5i \sqrt{7}

Correct answer:

None of the other choices gives the correct response.

Explanation:

The two factors are both square roots of negative numbers, and are therefore imaginary. Write both in terms of \displaystyle i before multiplying:

\displaystyle \sqrt{-35} = i \sqrt{35}

\displaystyle \sqrt{-5} = i \sqrt{5}

Therefore, using the Product of Radicals rule:

 \displaystyle \sqrt{-35} \cdot \sqrt{-5}

\displaystyle = i \sqrt{35} \cdot i \sqrt{5}

\displaystyle = i \cdot i \cdot \sqrt{35} \cdot \sqrt{5}

\displaystyle = i ^{2}\cdot \sqrt{35 \cdot 5 }

\displaystyle =-1 \cdot \sqrt{175 }

\displaystyle =-1 \cdot \sqrt{25 }\cdot \sqrt{7}

\displaystyle =-1 \cdot 5\cdot \sqrt{7}

\displaystyle =-5\sqrt{7}

Example Question #21 : Complex Numbers

\displaystyle x = 6+ 3i

\displaystyle y= 6 - 3i

Evaluate \displaystyle x^{3} + 3x^{2} y + 3 xy^{2} + y^{3}

Possible Answers:

\displaystyle - 1,728

\displaystyle 1,728 -216 i

\displaystyle 216 i

\displaystyle -216 i

\displaystyle 1,728

Correct answer:

\displaystyle 1,728

Explanation:

\displaystyle x^{3} + 3x^{2} y + 3 xy^{2} + y^{3} is recognizable as the cube of the binomial \displaystyle x+y. That is,

\displaystyle x^{3} + 3x^{2} y + 3 xy^{2} + y^{3} = (x+y) ^{3}

Therefore, setting \displaystyle x = 6+ 3i and \displaystyle y= 6 - 3i and evaluating:

\displaystyle x^{3} + 3x^{2} y + 3 xy^{2} + y^{3} =[ (6+3i) + (6-3i) ]^{3}

\displaystyle = (6+6+3i -3i) ^{3}

\displaystyle =12 ^{3}

\displaystyle = 1,728.

Example Question #201 : Exponents

\displaystyle x = 7+ 4i

\displaystyle y= 7 - 4i

Evaluate \displaystyle x^{3} - 3x^{2} y + 3 xy^{2} - y^{3}

Possible Answers:

\displaystyle -343

None of the other choices gives the correct response.

\displaystyle 512i

\displaystyle -512i

\displaystyle 343

Correct answer:

\displaystyle -512i

Explanation:

\displaystyle x^{3} - 3x^{2} y + 3 xy^{2} - y^{3} is recognizable as the cube of the binomial \displaystyle x-y. That is,

\displaystyle x^{3} - 3x^{2} y + 3 xy^{2} - y^{3}= (x-y) ^{3}

Therefore, setting \displaystyle x = 7+ 4i and \displaystyle y= 7 - 4i and evaluating:

\displaystyle x^{3} - 3x^{2} y + 3 xy^{2} - y^{3}=[ (7+4i) - (7-4 i) ]^{3}

\displaystyle = (7-7 +4i+4i ) ^{3}

\displaystyle =(8i)^{3}

Applying the Power of a Product Rule and the fact that \displaystyle i^{3} = -i:

\displaystyle (8i)^{3} = 8 ^{3} i ^{3} = 512 (-i) = -512i,

the correct value.

Example Question #1 : How To Multiply Complex Numbers

Raise \displaystyle 6- i\sqrt{7} to the power of 3.

Possible Answers:

\displaystyle 216 - 7i\sqrt{7}

\displaystyle 90- 101i \sqrt{7}

\displaystyle 90- 115i\sqrt{7}

\displaystyle 342- 115i\sqrt{7}

\displaystyle 342- 101i \sqrt{7}

Correct answer:

\displaystyle 90- 101i \sqrt{7}

Explanation:

To raise any expression \displaystyle A-B to the third power, use the pattern

\displaystyle \left (A+B \right )^{3} = A^{3} - 3A^{2} B + 3 AB^{2} - B^{3}

Setting \displaystyle A = 6, B = i \sqrt{7}:

\displaystyle (6- i \sqrt{7} )^{3} = 6^{3} - 3\cdot 6^{2} \cdot i \sqrt{7} + 3 \cdot 6 \cdot ( i \sqrt{7})^{2} - ( i \sqrt{7})^{3}

Taking advantage of the Power of a Product Rule:

\displaystyle (6- i \sqrt{7} )^{3} = 6^{3} - 3\cdot 6^{2} \cdot i \sqrt{7} + 3 \cdot 6 \cdot i^{2} \cdot ( \sqrt{7})^{2} - i ^{3}\cdot (\sqrt{7})^{3}

Since \displaystyle i^{2} = -1,

and

\displaystyle i^{3} = i^{2} \cdot i = -1 \cdot i = -i:

\displaystyle (6- i \sqrt{7} )^{3}=216 - 3\cdot 36 \cdot i \sqrt{7} + 3 \cdot 6 \cdot 7 \cdot (-1) - (-i) \cdot 7\cdot \sqrt{7}

\displaystyle (6- i \sqrt{7} )^{3} =216 - 108i \sqrt{7} -126 + 7i\sqrt{7}

Collecting real and imaginary terms:

\displaystyle (6- i \sqrt{7} )^{3} =216 -126 - 108i \sqrt{7} + 7i\sqrt{7}

\displaystyle (6- i \sqrt{7} )^{3} =90- 101i \sqrt{7}

Example Question #201 : Exponents

Raise \displaystyle 6-7i to the power of 3.

Possible Answers:

\displaystyle -666 - 1,099 i

\displaystyle 1,099 - 1,099 i

\displaystyle 1,099 - 413 i

None of the other choices gives the correct response.

\displaystyle -666 - 413 i

Correct answer:

\displaystyle -666 - 413 i

Explanation:

To raise any expression \displaystyle A-B to the third power, use the pattern

\displaystyle \left (A+B \right )^{3} = A^{3} - 3A^{2} B + 3 AB^{2} - B^{3}

Setting \displaystyle A = 6, B = 7i:

\displaystyle (6-7i)^{3} = 6^{3} - 3\cdot 6^{2} \cdot 7i + 3 \cdot 6 \cdot (7i)^{2} - (7i)^{3}

Taking advantage of the Power of a Product Rule:

\displaystyle (6-7i)^{3} = 6^{3} - 3\cdot 6^{2} \cdot 7i + 3 \cdot 6 \cdot 7^{2} \cdot i^{2} - 7^{3} \cdot i^{3}

Since \displaystyle i^{2} = -1,

and

\displaystyle i^{3} = i^{2} \cdot i = -1 \cdot i = -i:

\displaystyle (6-7i)^{3} =216 - 3\cdot 36 \cdot 7i + 3 \cdot 6 \cdot 49 \cdot (-1) - 343 \cdot (-i)

\displaystyle (6-7i)^{3} =216 - 756 i -882 + 343 i

Collecting real and imaginary terms:

\displaystyle (6-7i)^{3} =216 -882 - 756 i + 343 i

\displaystyle (6-7i)^{3} =-666 - 413 i

Learning Tools by Varsity Tutors