SAT Math : Fractions

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #2 : How To Simplify A Fraction

Solve for .

Possible Answers:

Correct answer:

Explanation:

To solve for , simplify the fraction. In order to do this, recall that dividing by a fraction is the same as multiplying by its reciprocal. Therefore, rewrite the equation as follows.

Now, simplify the first fraction by calculating four squared.

From here, factor the denominator of the second fraction.

Next, factor the 16.

From here, cancel out like terms that are in both the numerator and denominator. In this particular case that includes (x-2) and 2.

Now, distribute the eight.

Next, multiply both sides by the denominator.

The (8x+16) cancels out and leaves the following equation.

Now to solve for  perform opposite operations to move all numerical values to one side of the equation leaving  by itself on the other side of the equation.

Example Question #181 : Fractions

Which of the following fractions is not equivalent to \frac{6}{45}?

Possible Answers:

\frac{12}{89}

\frac{2}{15}

\frac{3}{22.5}

\frac{4}{30}

Correct answer:

\frac{12}{89}

Explanation:

Let us simplify \frac{6}{45}:

\frac{6}{45}=\frac{3\times 2}{3\times 15}=\frac{2}{15}

We can get alternate forms of the same fraction by multiplying the denominator and the numerator by the same number:

\frac{2\times 2}{15\times 2}=\frac{4}{30}

\frac{2\times 1.5}{15\times 1.5}=\frac{3}{22.5}

Now let's look at \frac{12}{89}:

, but .

Therefore, \frac{12}{89} is the correct answer, as it is not equivalent to \frac{6}{45}.

Learning Tools by Varsity Tutors