SAT II Math II : Simplifying Expressions

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Expressions

Decrease \displaystyle 8d - 35 by 40%. Which of the following will this be equal to?

Possible Answers:

\displaystyle 4.8d-35

\displaystyle 8d-21

\displaystyle 3.2d-21

\displaystyle 4.8 d - 21

\displaystyle 3.2d - 14

Correct answer:

\displaystyle 4.8 d - 21

Explanation:

A number decreased by 40% is equivalent to 100% of the number minus 40% of the number. This is taking 60% of the number, or, equivalently, multiplying it by 0.6. 

Therefore, \displaystyle 8d - 35 decreased by 40% is 0.6 times this, or

\displaystyle 0.6 \left (8d - 35 \right ) = 0.6 \cdot 8d - 0.6 \cdot 35 = 4.8 d - 21

Example Question #2 : Simplifying Expressions

Simplify:

\displaystyle \left ( 3x^{-3}\right )^{-3}

Possible Answers:

\displaystyle \frac{ x^{9} }{27}

\displaystyle \frac{1}{27x^{9}}

\displaystyle 27x^{9}

\displaystyle -27x^{9}

\displaystyle \frac{27}{ x^{9} }

Correct answer:

\displaystyle \frac{ x^{9} }{27}

Explanation:

\displaystyle \left ( 3x^{-3}\right )^{-3}

\displaystyle = \left ( \frac{3}{x^{3}}\right )^{-3}

\displaystyle = \left ( \frac{x^{3}}{3}\right )^{3}

\displaystyle = \frac{\left (x^{3} \right )^{3}}{3^{3}}

\displaystyle = \frac{ x^{3 \cdot 3} }{27}

\displaystyle = \frac{ x^{9} }{27}

Example Question #193 : Sat Subject Test In Math Ii

Assume all variables assume positive values.

Simplify:

\displaystyle \left ( \frac{y^{-3}}{x^{-2}} \right )^{2}

Possible Answers:

\displaystyle \frac{x^{4}}{y^{6}}

\displaystyle \frac{x^{4}}{y^{9}}

\displaystyle \frac{1}{x^{4}y^{6}}

\displaystyle \frac{y^{6}}{x^{4}}

\displaystyle \frac{y^{9}}{x^{4}}

Correct answer:

\displaystyle \frac{x^{4}}{y^{6}}

Explanation:

\displaystyle \left ( \frac{y^{-3}}{x^{-2}} \right )^{2}

\displaystyle = \frac{y^{-3 \cdot 2}}{x^{-2\cdot 2}}

\displaystyle = \frac{y^{-6}}{x^{-4}}

\displaystyle = y^{-6} \div x^{-4}

\displaystyle = \frac{1}{y^{6}} \div \frac{1}{ x^{4}}

\displaystyle = \frac{1}{y^{6}} \cdot x^{4}

\displaystyle = \frac{x^{4}}{y^{6}}

Example Question #1 : Simplifying Expressions

Assume all variables assume positive values. Simplify:

\displaystyle 6x^{0}+ 7y^{0}+ 8z^{0}

Possible Answers:

The expression is already simplified.

The expression is undefined.

\displaystyle 21xyz

\displaystyle 6x + 7y + 8z

\displaystyle 21

Correct answer:

\displaystyle 21

Explanation:

Any nonzero expression raised to the power of 0 is equal to 1. Therefore, 

\displaystyle 6x^{0}+ 7y^{0}+ 8z^{0}

\displaystyle = 6 \cdot 1 + 7 \cdot 1 + 8 \cdot 1

\displaystyle = 6 + 7 + 8 = 21

Example Question #192 : Sat Subject Test In Math Ii

Simplify the following expression:  \displaystyle xyz(xy-xz)

Possible Answers:

\displaystyle x^2y^2z^2-x^2yz^2

\displaystyle 2xyz-2xz

\displaystyle x^2y^2z-x^2yz^2

\displaystyle x^2y^2z-x^2yz

\displaystyle 2x^2y^2z

Correct answer:

\displaystyle x^2y^2z-x^2yz^2

Explanation:

Distribute the outer term through both terms in the parentheses.

\displaystyle xyz(xy-xz) = xyz(xy) - xyz(xz)

Multiply each term.

\displaystyle x^2y^2z-x^2yz^2

There are no like-terms.

The answer is:  \displaystyle x^2y^2z-x^2yz^2

Example Question #2 : Simplifying Expressions

Simplify the expression:  \displaystyle 6(2x-3)-2(-x-3)

Possible Answers:

\displaystyle 10x-9

\displaystyle 14x-12

\displaystyle 14x-24

\displaystyle 10x+9

\displaystyle 12x-12

Correct answer:

\displaystyle 14x-12

Explanation:

Distribute the integers through the binomials.

\displaystyle 12x-18 +2x+6

Combine like-terms.

The answer is:  \displaystyle 14x-12

Example Question #3 : Simplifying Expressions

Simplify \displaystyle x - 5 - (2 - x).

Possible Answers:

\displaystyle -3

\displaystyle 0

\displaystyle 2x - 7

\displaystyle x^2 - 7

\displaystyle x+3

Correct answer:

\displaystyle 2x - 7

Explanation:

We can start by distributing the negative sign in the parentheses term:

\displaystyle x - 5 - 2 + x

Now we can combine like terms.  The constants go together, and the variables go together:

\displaystyle 2x - 7

Example Question #3 : Simplifying Expressions

Simplify \displaystyle -(x + y) + 4x + 2y.

Possible Answers:

\displaystyle 3x + y

\displaystyle 3x-y

\displaystyle 3xy

\displaystyle 3(x+y)

\displaystyle 5x+3y

Correct answer:

\displaystyle 3x + y

Explanation:

First, we can distribute the negative sign through the parentheses term:

\displaystyle -x - y + 4x + 2y

Now we gather like terms.  Remember, you can't gather different variables together.  The \displaystyle x's and \displaystyle y's will still be separate terms:

\displaystyle 3x + y

Example Question #4 : Simplifying Expressions

Simplify \displaystyle -(x + 2y + 3) - 3x + y.

Possible Answers:

\displaystyle 4x +y +3

\displaystyle 2x +3y +3

\displaystyle -3x^2 -2y^2 - 3

\displaystyle 2x +3y -3

\displaystyle -4x - y - 3

Correct answer:

\displaystyle -4x - y - 3

Explanation:

Start by distributing the negative sign through the parentheses term:

\displaystyle -x - 2y - 3 - 3x + y

Now combine like terms.  Each variable can't be combined with different variables:

\displaystyle -4x - y - 3

Example Question #5 : Simplifying Expressions

Simplify \displaystyle (\sqrt{x^2})^2

Possible Answers:

\displaystyle \sqrt{x^3}

\displaystyle x^{\frac{1}{4}}

\displaystyle \sqrt{x^4}

\displaystyle x

\displaystyle x^2

Correct answer:

\displaystyle x^2

Explanation:

A square root is the inverse of squaring a term, so they cancel each other out:

\displaystyle (\sqrt{x^2})^2=x^2

From there, there's nothing left to simplify.

Learning Tools by Varsity Tutors