SAT II Math II : SAT Subject Test in Math II

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #131 : Sat Subject Test In Math Ii

Let \(\displaystyle A = \begin{bmatrix}x & 8 \\ 18 & x \end{bmatrix}\).

Which of the following real value(s) of \(\displaystyle x\) makes \(\displaystyle A\) a matrix without an inverse?

Possible Answers:

There is one such value: \(\displaystyle x = 144\)

There are two such values: \(\displaystyle x = -12\) and \(\displaystyle x = 12\)

\(\displaystyle A\) has an inverse for all real values of \(\displaystyle x\)

There are two such values: \(\displaystyle x = 8\) and \(\displaystyle x = 18\)

There is one such value: \(\displaystyle x = 13\)

Correct answer:

There are two such values: \(\displaystyle x = -12\) and \(\displaystyle x = 12\)

Explanation:

A matrix \(\displaystyle A = \begin{bmatrix} a& b\\ c& d \end{bmatrix}\) lacks an inverse if and only if its determinant \(\displaystyle ad-bc\) is equal to zero. The determinant of \(\displaystyle A = \begin{bmatrix}x & 8 \\ 18 & x \end{bmatrix}\) is 

\(\displaystyle D = x \cdot x - 8 \cdot 18 = x^{2}- 144\).

Setting this equal to 0:

\(\displaystyle x^{2}- 144 = 0\)

\(\displaystyle x^{2}- 144+144 = 0 +144\)

\(\displaystyle x^{2} = 144\)

Taking the square root of both sides:

\(\displaystyle x = \pm \sqrt{144}\)

\(\displaystyle x = \pm 12\)

The matrix therefore has no inverse if either \(\displaystyle x = -12\) or \(\displaystyle x = 12\).

Example Question #132 : Sat Subject Test In Math Ii

Let \(\displaystyle I\) be the two-by-two identity matrix and \(\displaystyle A = \begin{bmatrix} 4& -7\\ 8& 3 \end{bmatrix}\).

Which matrix is equal to the inverse of \(\displaystyle A+I\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} \frac{41}{44}& -\frac{7}{44}\\ \frac{2}{11}& \frac{12}{11} \end{bmatrix}\)

\(\displaystyle A+ I\) does not have an inverse.

\(\displaystyle \begin{bmatrix} \frac{71}{68}&\frac{7}{68} \\ -\frac{2}{17}& \frac{18}{17} \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -\frac{1}{9}&- \frac{7}{36}\\\frac{ 2}{9}& -\frac{5 }{36}\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} \frac{ 1}{19}& \frac{7}{76}\\-\frac{ 2}{19}& \frac{5 }{76}\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} \frac{ 1}{19}& \frac{7}{76}\\-\frac{ 2}{19}& \frac{5 }{76}\end{bmatrix}\)

Explanation:

\(\displaystyle A = \begin{bmatrix} 4& -7\\ 8& 3 \end{bmatrix}\); the two-by-two identity matrix is \(\displaystyle I = \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}\). Add the two by adding elements in corresponding positions:

\(\displaystyle A +I = \begin{bmatrix} 4+1& -7+0\\ 8+0& 3+1 \end{bmatrix} = \begin{bmatrix} 5& -7 \\ 8 & 4 \end{bmatrix}\).

The inverse of a two-by-two matrix \(\displaystyle B = \begin{bmatrix} a& b\\ c& d \end{bmatrix}\) is \(\displaystyle B ^{-1}= \begin{bmatrix} \frac{ d}{\det B}& -\frac{b}{\det B}\\-\frac{ c}{\det B}& \frac{a }{\det B}\end{bmatrix}\), where 

\(\displaystyle \det B = ad -bc\).

We can find \(\displaystyle (A+I)^{-1}\) by setting \(\displaystyle a= 5, b = -7 , c = 8, d = 4\). The determinant of \(\displaystyle (A+I)^{-1}\) is

\(\displaystyle ad -bc = 5\cdot 4 - (-7) \cdot 8 = 20 - (-56 ) = 76\)

Replacing:

\(\displaystyle (A+I)^{-1}= \begin{bmatrix} \frac{ 4}{76}& \frac{7}{76}\\-\frac{ 8}{76}& \frac{5 }{76}\end{bmatrix}\);

simplifying the fractions, this is 

\(\displaystyle (A+I)^{-1}= \begin{bmatrix} \frac{ 1}{19}& \frac{7}{76}\\-\frac{ 2}{19}& \frac{5 }{76}\end{bmatrix}\)

 

Example Question #133 : Sat Subject Test In Math Ii

Let \(\displaystyle A = \begin{bmatrix} 5&4 \\ 10& -8 \end{bmatrix}\) and \(\displaystyle B = A^{-1}\).

Evaluate \(\displaystyle b_{11}\).

Possible Answers:

\(\displaystyle -\frac{1}{8}\)

\(\displaystyle A^{-1}\) does not exist.

\(\displaystyle -\frac{1}{20}\)

\(\displaystyle \frac{1}{10}\)

\(\displaystyle \frac{1}{16}\)

Correct answer:

\(\displaystyle \frac{1}{10}\)

Explanation:

The inverse \(\displaystyle A ^{-1}\) of any two-by-two matrix \(\displaystyle A\) can be found according to this pattern:

If \(\displaystyle A = \begin{bmatrix} a& b\\ c& d \end{bmatrix}\)

then 

\(\displaystyle A ^{-1}= \frac{1}{D} \begin{bmatrix}d& - b\\ -c& a \end{bmatrix} = \begin{bmatrix}\frac{d}{D}& - \frac{b}{D}\\ -\frac{c}{D}& \frac{a }{D} \end{bmatrix}\),

where determinant \(\displaystyle D\) is equal to \(\displaystyle ad-cb\).

Therefore, if \(\displaystyle B = A ^{-1}\), then \(\displaystyle b_{11}\), the first row/first column entry in the matrix \(\displaystyle B\), can be found by setting \(\displaystyle a = 5, b= 4, c= 10, d=-8\), then evaluating:

\(\displaystyle b_{11} = \frac{d}{D} = \frac{d}{ad-bc} = \frac{-8}{5(-8)-4(10)} = \frac{-8}{-40 -40} = \frac{-8}{-80} = \frac{1}{10}\)

Example Question #134 : Sat Subject Test In Math Ii

\(\displaystyle A = \begin{bmatrix} 8& x\\ x& 4 \end{bmatrix}\)

For which of the following real values of \(\displaystyle x\) does \(\displaystyle A\) have determinant of sixteen?

Possible Answers:

\(\displaystyle x= -4\) or \(\displaystyle x = 4\)

None of these

\(\displaystyle x= 0\)

\(\displaystyle x= -2\) or \(\displaystyle x = 2\)

\(\displaystyle x = 16\)

Correct answer:

\(\displaystyle x= -4\) or \(\displaystyle x = 4\)

Explanation:

A matrix \(\displaystyle A = \begin{bmatrix} a& b\\ c& d \end{bmatrix}\) lacks an inverse if and only if its determinant \(\displaystyle ad-bc\) is equal to zero. The determinant of \(\displaystyle A = \begin{bmatrix} 8& x\\ x& 4 \end{bmatrix}\) is

\(\displaystyle D = 8 \cdot 4 - x \cdot x = 32 - x^{2}\)

We seek the value of \(\displaystyle x\) that sets this quantity equal to 16. Setting it as such then solving for \(\displaystyle x\):

\(\displaystyle 32 - x^{2} = 16\)

\(\displaystyle 32 - x^{2} - 32 = 16 - 32\)

\(\displaystyle - x^{2} = -16\)

\(\displaystyle x^{2} = 16\)

\(\displaystyle x = \pm 4\)

Therefore, either \(\displaystyle x= -4\) or \(\displaystyle x = 4\).

Example Question #135 : Sat Subject Test In Math Ii

Let \(\displaystyle A\) equal the following:

\(\displaystyle A = \begin{bmatrix} x & 8 \\ x&32 \end{bmatrix}\).

Which of the following values of \(\displaystyle x\) makes \(\displaystyle A\) a matrix without an inverse?

Possible Answers:

There is one such value: \(\displaystyle x = 8\)

There are two such values: \(\displaystyle x = -16\) or \(\displaystyle x = 16\)

There are two such values: \(\displaystyle x = -20\) or \(\displaystyle x = 20\)

There is one such value: \(\displaystyle x = 32\)

There is one such value: \(\displaystyle x = 0\)

Correct answer:

There is one such value: \(\displaystyle x = 0\)

Explanation:

A matrix \(\displaystyle A = \begin{bmatrix} a& b\\ c& d \end{bmatrix}\) lacks an inverse if and only if its determinant \(\displaystyle ad-bc\) is equal to zero. The determinant of \(\displaystyle A = \begin{bmatrix} x & 8 \\ x&32 \end{bmatrix}\) is

\(\displaystyle D = x \cdot 32 - 8 \cdot x = 32x - 8x = 24x\)

Set this equal to 0 and solve for \(\displaystyle x\):

\(\displaystyle 24x = 0\)

\(\displaystyle 24x\div 24 = 0 \div 24\)

\(\displaystyle x = 0\),

the only such value.

Example Question #1 : Sequences

Evaluate: 

\(\displaystyle \sum_{i = 1}^{\infty} \left (\frac{4}{3} \right )^{i}\)

Possible Answers:

\(\displaystyle \frac{5}{4}\)

\(\displaystyle \frac{7}{4}\)

The series diverges

\(\displaystyle \frac{5}{3}\)

\(\displaystyle 2\)

Correct answer:

The series diverges

Explanation:

An infinite series \(\displaystyle \sum_{i = 1}^{\infty}a^{i}\) converges to a sum if and only if \(\displaystyle |a| < 1\). However, in the series \(\displaystyle \sum_{i = 1}^{\infty} \left (\frac{4}{3} \right )^{i}\), this is not the case, as \(\displaystyle \left | \frac{4}{3} \right |= \frac{4}{3} > 1\). This series diverges.

Example Question #2 : Sequences

Give the next term in this sequence:

\(\displaystyle 0,0, \frac{1}{2}, \frac{2}{3}, \frac{4}{5}, \frac{7}{8}, \frac{12}{13}, \frac{20}{21},\)_______________

Possible Answers:

\(\displaystyle \frac{31}{32}\)

\(\displaystyle \frac{33}{34}\)

\(\displaystyle \frac{25}{26}\)

\(\displaystyle 1\)

\(\displaystyle \frac{34}{35}\)

Correct answer:

\(\displaystyle \frac{33}{34}\)

Explanation:

The key to finding the next term lies in the denominators of the third term onwards. They are terms of the Fibonacci sequence, which begin with the terms 1 and 1 and whose subsequent terms are each formed by adding the previous two.

The \(\displaystyle n\)th term of the sequence is the number \(\displaystyle \frac{F_{n}-1}{F_{n}}\), where \(\displaystyle F_{n}\) is the \(\displaystyle n\)th number in the Fibonacci sequence (since the first two Fibonacci numbers are both 1, the first two terms being 0 fits this pattern). The Fibonacci number following 13 and 21 is their sum, 34, so the next number in the sequence is

\(\displaystyle \frac{34-1}{34}= \frac{33}{34}\).

Example Question #111 : Mathematical Relationships

Give the next term in this sequence:

\(\displaystyle 12, 13, 17, 26, 42, 67,\)__________

Possible Answers:

\(\displaystyle 92\)

\(\displaystyle 100\)

\(\displaystyle 84\)

\(\displaystyle 116\)

\(\displaystyle 103\)

Correct answer:

\(\displaystyle 103\)

Explanation:

\(\displaystyle 12\textbf{ + 1} = 13\)

\(\displaystyle 13\textbf{ + 4}= 17\)

\(\displaystyle 17\textbf{ + 9}= 26\)

\(\displaystyle 26\textbf{ + 16} = 42\)

\(\displaystyle 42\textbf{ + 25}=67\)

Each term is derived from the next by adding a perfect square integer; the increment increases from one square to the next higher one each time. To maintain the pattern, add the next perfect square, 36:

\(\displaystyle 67\textbf{ + 36 } =103\)

 

Example Question #4 : Sequences

Give the next term in this sequence:

\(\displaystyle 1, 1,3, 5, 11, 21, 43, 85, 171,\)_____________

Possible Answers:

\(\displaystyle 340\)

\(\displaystyle 341\)

\(\displaystyle 343\)

\(\displaystyle 342\)

\(\displaystyle 339\)

Correct answer:

\(\displaystyle 341\)

Explanation:

Each term is derived from the previous term by doubling the latter and alternately adding and subtracting 1, as follows:

\(\displaystyle 1 \textbf{ x 2 - 1 } = 1\)

\(\displaystyle 1 \textbf{ x 2 + 1 } = 3\)

\(\displaystyle 3 \textbf{ x 2 - 1 } = 5\)

\(\displaystyle 5 \textbf{ x 2 + 1 } = 11\)

\(\displaystyle 11 \textbf{ x 2 - 1 } =21\)

\(\displaystyle 21 \textbf{ x 2 + 1 } = 43\)

\(\displaystyle 43\textbf{ x 2 - 1 } = 85\)

\(\displaystyle 85 \textbf{ x 2 + 1 } = 171\)

The next term is derived as follows:

\(\displaystyle 171 \textbf{ x 2 - 1 } = 341\)

Example Question #5 : Sequences

Give the next term in this sequence:

\(\displaystyle 1, \sqrt{2}, \sqrt{6}, 2\sqrt{6}, 2 \sqrt{30}, 12 \sqrt{5},\)_____________

Possible Answers:

The correct answer is not among the other responses.

\(\displaystyle 12\sqrt{30}\)

\(\displaystyle 72\sqrt{5}\)

\(\displaystyle 12 \sqrt{35}\)

\(\displaystyle 84\sqrt{5}\)

Correct answer:

\(\displaystyle 12 \sqrt{35}\)

Explanation:

The pattern becomes more clear if each term is rewritten as a single radical expression:

\(\displaystyle 1 = \sqrt {1} = \sqrt{1!}\)

\(\displaystyle \sqrt{2} = \sqrt{2!}\)

\(\displaystyle \sqrt{6} = \sqrt{3!}\)

\(\displaystyle 2\sqrt{6} =\sqrt{4} \cdot \sqrt{6} = \sqrt {24}=\sqrt{4!}\)

\(\displaystyle 2 \sqrt{30}= \sqrt{4} \cdot \sqrt{30}= \sqrt{120} = \sqrt {5!}\)

\(\displaystyle 12\sqrt{5} = \sqrt{144} \cdot \sqrt{5} = \sqrt{720} = \sqrt{6!}\)

The \(\displaystyle n\)th term is \(\displaystyle \sqrt{n!}\) . The next (seventh) term is therefore

\(\displaystyle \sqrt{7!}= \sqrt{5,040}= \sqrt{144} \times \sqrt{35} = 12 \sqrt{35}\) 

Learning Tools by Varsity Tutors