SAT II Math II : SAT Subject Test in Math II

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Matrices

Simplify:

Possible Answers:

Correct answer:

Explanation:

Matrix addition is very easy! All that you need to do is add each correlative member to each other. Think of it like this:

Now, just simplify:

There is your answer!

Example Question #13 : Find The Sum Or Difference Of Two Matrices

Simplify:

Possible Answers:

Correct answer:

Explanation:

Matrix addition is really easy—don't overthink it! All you need to do is combine the two matrices in a one-to-one manner for each index:

Then, just simplify all of those simple additions and subtractions:

Example Question #1 : Matrices

Evaluate: 

Possible Answers:

Correct answer:

Explanation:

This problem involves a scalar multiplication with a matrix. Simply distribute the negative three and multiply this value with every number in the 2 by 3 matrix. The rows and columns will not change.

Example Question #1 : How To Find Scalar Interactions With A Matrix

Simplify:

Possible Answers:

Correct answer:

Explanation:

Scalar multiplication and addition of matrices are both very easy. Just like regular scalar values, you do multiplication first:

The addition of matrices is very easy. You merely need to add them directly together, correlating the spaces directly.

Example Question #1061 : Algebra

What is ?

Possible Answers:

Correct answer:

Explanation:

You can begin by treating this equation just like it was:

That is, you can divide both sides by :

Now, for scalar multiplication of matrices, you merely need to multiply the scalar by each component:

Then, simplify:

Therefore, 

Example Question #4 : Find The Sum Or Difference Of Two Matrices

Given the following matrices, what is the product of  and ?

 

Possible Answers:

Correct answer:

Explanation:

When subtracting matrices, you want to subtract each corresponding cell.

 

 

Now solve for  and 

 

 

Example Question #1 : How To Subtract Matrices

If , what is ?

 

Possible Answers:

Correct answer:

Explanation:

You can treat matrices just like you treat other members of an equation. Therefore, you can subtract the matrix

from both sides of the equation.  This gives you:

Now, matrix subtraction is simple. You merely subtract each element, matching the correlative spaces with each other:

Then, you simplify:

Therefore, 

Example Question #1062 : Algebra

If , what is ?

Possible Answers:

Correct answer:

Explanation:

Begin by distributing the fraction through the matrix on the left side of the equation. This will simplify the contents, given that they are factors of :

Now, this means that your equation looks like:

This simply means:

and

 or 

Therefore, 

Example Question #21 : Matrices

Evaluate .

Possible Answers:

Correct answer:

Explanation:

The element in row , column , of  can be found by multiplying row  of  by row  of  - that is, by multiplying elements in corresponding positions and adding the products. Therefore, 

Example Question #22 : Matrices

The determinant of this matrix is equal to 4. Evaluate .

Possible Answers:

Correct answer:

Explanation:

A matrix  has as its determinant . Setting , this becomes 

Set this determinant equal to 4 and solve for :

the correct response.

Learning Tools by Varsity Tutors