All SAT II Math I Resources
Example Questions
Example Question #1 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions
Find the vertical asymptote of the equation.
There are no vertical asymptotes.
To find the vertical asymptotes, we set the denominator of the function equal to zero and solve.
Example Question #1 : Asymptotes
Consider the exponential function . Determine if there are any asymptotes and where they lie on the graph.
There are no asymptotes. goes to positive infinity in both the and directions.
There is one vertical asymptote at .
There is one horizontal asymptote at .
There is one vertical asymptote at .
There is one horizontal asymptote at .
For positive values, increases exponentially in the direction and goes to positive infinity, so there is no asymptote on the positive -axis. For negative values, as decreases, the term becomes closer and closer to zero so approaches as we move along the negative axis. As the graph below shows, this is forms a horizontal asymptote.
Example Question #1331 : High School Math
Solve the equation for .
Begin by recognizing that both sides of the equation have a root term of .
Using the power rule, we can set the exponents equal to each other.
Example Question #1 : Solving Exponential Equations
Solve the equation for .
Begin by recognizing that both sides of the equation have the same root term, .
We can use the power rule to combine exponents.
Set the exponents equal to each other.
Example Question #2 : Solving Exponential Functions
In 2009, the population of fish in a pond was 1,034. In 2013, it was 1,711.
Write an exponential growth function of the form that could be used to model , the population of fish, in terms of , the number of years since 2009.
Solve for the values of a and b:
In 2009, and (zero years since 2009). Plug this into the exponential equation form:
. Solve for to get .
In 2013, and . Therefore,
or . Solve for to get
.
Then the exponential growth function is
.
Example Question #1 : Solving Exponential Functions
Solve for .
8 and 4 are both powers of 2.
Example Question #2 : Solving Exponential Functions
Solve for :
No solution
Because both sides of the equation have the same base, set the terms equal to each other.
Add 9 to both sides:
Then, subtract 2x from both sides:
Finally, divide both sides by 3:
Example Question #11 : Solving Functions
Solve for :
No solution
125 and 25 are both powers of 5.
Therefore, the equation can be rewritten as
.
Using the Distributive Property,
.
Since both sides now have the same base, set the two exponents equal to one another and solve:
Add 30 to both sides:
Add to both sides:
Divide both sides by 20:
Example Question #11 : Solving Exponential Functions
Solve .
No solution
Both 27 and 9 are powers of 3, therefore the equation can be rewritten as
.
Using the Distributive Property,
.
Now that both sides have the same base, set the two exponenents equal and solve.
Add 12 to both sides:
Subtract from both sides:
Example Question #11 : Solving Functions
The first step in thist problem is divide both sides by three: . Then, recognize that 8 could be rewritten with a base of 2 as well (). Therefore, your answer is 3.
Certified Tutor
Certified Tutor