All SAT II Math I Resources
Example Questions
Example Question #8 : Graphing Quadratic Functions
How many points of intersection could two distinct quadratic functions have?
.
.
.
only
and
, , and
only
and
, , and
An intersection of two functions is a point they share in common. A diagram can show all the possible solutions:
Notice that:
and intersect times
and intersect time
and intersect times
The diagram shows that , , and are all possible.
Example Question #1 : How To Graph A Quadratic Function
Which of the following graphs matches the function ?
Start by visualizing the graph associated with the function :
Terms within the parentheses associated with the squared x-variable will shift the parabola horizontally, while terms outside of the parentheses will shift the parabola vertically. In the provided equation, 2 is located outside of the parentheses and is subtracted from the terms located within the parentheses; therefore, the parabola in the graph will shift down by 2 units. A simplified graph of looks like this:
Remember that there is also a term within the parentheses. Within the parentheses, 1 is subtracted from the x-variable; thus, the parabola in the graph will shift to the right by 1 unit. As a result, the following graph matches the given function :
Example Question #21 : Graphing Functions
Simplify the following expression:
To simplify, we must first simplify the absolute values.
Now, combine like terms:
Example Question #1103 : Algebra Ii
Where does cross the axis?
5
-7
-3
3
7
7
crosses the axis when equals 0. So, substitute in 0 for :
Example Question #2 : Graphing Other Functions
Which of the following is an equation for the above parabola?
The zeros of the parabola are at and , so when placed into the formula
,
each of their signs is reversed to end up with the correct sign in the answer. The coefficient can be found by plugging in any easily-identifiable, non-zero point to the above formula. For example, we can plug in which gives
Example Question #1 : How To Graph A Function
Which equation best represents the following graph?
None of these
We have the following answer choices.
The first equation is a cubic function, which produces a function similar to the graph. The second equation is quadratic and thus, a parabola. The graph does not look like a prabola, so the 2nd equation will be incorrect. The third equation describes a line, but the graph is not linear; the third equation is incorrect. The fourth equation is incorrect because it is an exponential, and the graph is not an exponential. So that leaves the first equation as the best possible choice.
Example Question #2 : Graphing Polynomial Functions
Which of the graphs best represents the following function?
None of these
The highest exponent of the variable term is two (). This tells that this function is quadratic, meaning that it is a parabola.
The graph below will be the answer, as it shows a parabolic curve.
Example Question #5 : Graphing Polynomial Functions
Which of the following is a graph for the following equation:
Cannot be determined
The way to figure out this problem is by understanding behavior of polynomials.
The sign that occurs before the is positive and therefore it is understood that the function will open upwards. the "8" on the function is an even number which means that the function is going to be u-shaped. The only answer choice that fits both these criteria is:
Example Question #2 : Graphing Other Functions
Define a function .
for exactly one real value of on the interval .
Which of the following statements is correct about ?
Define . Then, if , it follows that .
By the Intermediate Value Theorem (IVT), if is a continuous function, and and are of unlike sign, then for some . As a polynomial, is a continuous function, so the IVT applies here.
Evaluate for each of the following values:
Only in the case of does it hold that assumes a different sign at both endpoints - . By the IVT, , and , for some .
Certified Tutor