PSAT Math : Hexagons

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Hexagons

How many diagonals are there in a regular hexagon?

Possible Answers:

\displaystyle 9

\displaystyle 36

\displaystyle 10

\displaystyle 24

\displaystyle 30

Correct answer:

\displaystyle 9

Explanation:

A diagonal is a line segment joining two non-adjacent vertices of a polygon.  A regular hexagon has six sides and six vertices.  One vertex has three diagonals, so a hexagon would have three diagonals times six vertices, or 18 diagonals.  Divide this number by 2 to account for duplicate diagonals between two vertices. The formula for the number of vertices in a polygon is:

\displaystyle \frac{n\cdot (n-3)}{2}

where \displaystyle n=\#\ of\ sides.

Example Question #3 : Hexagons

How many diagonals are there in a regular hexagon?

Possible Answers:

18

3

9

6

10

Correct answer:

9

Explanation:

A diagonal connects two non-consecutive vertices of a polygon.  A hexagon has six sides.  There are 3 diagonals from a single vertex, and there are 6 vertices on a hexagon, which suggests there would be 18 diagonals in a hexagon.  However, we must divide by two as half of the diagonals are common to the same vertices. Thus there are 9 unique diagonals in a hexagon. The formula for the number of diagonals of a polygon is:

\displaystyle \frac{n\cdot (n-3)}{2}

where n = the number of sides in the polygon.

Thus a pentagon thas 5 diagonals.  An octagon has 20 diagonals.

Example Question #1 : How To Find The Length Of The Diagonal Of A Hexagon

Regular Hexagon \displaystyle ABCDEF has a diagonal \displaystyle \overline{AE} with length 1.

Give the length of diagonal \displaystyle \overline{A D}

Possible Answers:

\displaystyle \sqrt{ 2}

\displaystyle \frac{2\sqrt{3}}{3}

\displaystyle \frac{3\sqrt{2}}{2}

\displaystyle \sqrt{3}

\displaystyle 2

Correct answer:

\displaystyle \frac{2\sqrt{3}}{3}

Explanation:

The key is to examine \displaystyle \Delta AED in thie figure below:

Hexagon_50

Each interior angle of a regular hexagon, including \displaystyle \angle F, measures \displaystyle 120^{\circ }, so it can be easily deduced by way of the Isosceles Triangle Theorem that \displaystyle m \angle FEA = 30^{\circ }\displaystyle m \angle FED = 120^{\circ }, so by angle addition, 

\displaystyle m \angle AED = 90^{\circ }.

Also, by symmetry,

\displaystyle m \angle EDA = \frac{1}{2} \cdot 120^{\circ } = 60^{\circ },

so \displaystyle m \angle EAD= 30^{\circ },

and \displaystyle \Delta AED is a \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangle whose long leg \displaystyle \overline{AE} has length \displaystyle AE= 1.

By the \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} Theorem, \displaystyle \overline{AD}, which is the hypotenuse of \displaystyle \Delta AED, has length \displaystyle \frac{2\sqrt{3}}{3} times that of the long leg, so \displaystyle AD =\frac{2\sqrt{3}}{3}.

Example Question #1 : Hexagons

Regular Hexagon \displaystyle ABCDEF has a diagonal \displaystyle \overline{AD} with length 1.

Give the length of diagonal \displaystyle \overline{A E}

Possible Answers:

\displaystyle \frac{3\sqrt{2}}{4}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle \frac{\sqrt{2}}{2}

\displaystyle \frac{2}{3}

\displaystyle \frac{\sqrt{3}}{3}

Correct answer:

\displaystyle \frac{\sqrt{3}}{2}

Explanation:

The key is to examine \displaystyle \Delta AED in thie figure below:

Hexagon_50

Each interior angle of a regular hexagon, including \displaystyle \angle F, measures \displaystyle 120^{\circ }, so it can be easily deduced by way of the Isosceles Triangle Theorem that \displaystyle m \angle FEA = 30^{\circ }\displaystyle m \angle FED = 120^{\circ }, so by angle addition, 

\displaystyle m \angle AED = 90^{\circ }.

Also, by symmetry,

\displaystyle m \angle EDA = \frac{1}{2} \cdot 120^{\circ } = 60^{\circ },

so \displaystyle m \angle EAD= 30^{\circ },

and \displaystyle \Delta AED is a \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangle whose hypotenuse \displaystyle \overline{AD} has length \displaystyle AD = 1.

By the \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} Theorem, the long leg \displaystyle \overline{AE} of \displaystyle \Delta AED has length \displaystyle \frac{\sqrt{3}}{2} times that of hypotenuse \displaystyle \overline{AD}, so \displaystyle AE = \frac{\sqrt{3}}{2}.

Example Question #574 : Geometry

Regular hexagon \displaystyle ABCDEF has side length of 1.

Give the length of diagonal \displaystyle \overline{A D}

Possible Answers:

\displaystyle 2\sqrt{2}

\displaystyle 2

\displaystyle \sqrt{2}

\displaystyle 2\sqrt{3}

\displaystyle \sqrt{3}

Correct answer:

\displaystyle 2

Explanation:

The key is to examine \displaystyle \Delta AED in thie figure below:

Hexagon_50

Each interior angle of a regular hexagon, including \displaystyle \angle F, measures \displaystyle 120^{\circ }, so it can be easily deduced by way of the Isosceles Triangle Theorem that \displaystyle m \angle FEA = 30^{\circ }. To find  \displaystyle m \angle AED we can subtract \displaystyle m \angle FEA = 30^{\circ } from \displaystyle m \angle FED = 120^{\circ }. Thus resulting in:

\displaystyle m \angle AED = 90^{\circ }

Also, by symmetry,

\displaystyle m \angle EDA = \frac{1}{2} \cdot 120^{\circ } = 60^{\circ },

so \displaystyle m \angle EAD= 30^{\circ }.

Therefore, \displaystyle \Delta AED is a \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangle whose short leg \displaystyle \overline{ED} has length  \displaystyle ED = 1.

The hypotenuse \displaystyle \overline{AD} of this  \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangle measures twice the length of short leg \displaystyle \overline{ED}, so \displaystyle AD = 2.

Example Question #2 : How To Find The Length Of The Diagonal Of A Hexagon

Regular hexagon \displaystyle ABCDEF has side length 1.

Give the length of diagonal \displaystyle \overline{A E}

Possible Answers:

\displaystyle \frac{\sqrt{2}}{2}

\displaystyle \sqrt{2}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle \frac{3}{2}

\displaystyle \sqrt{3}

Correct answer:

\displaystyle \sqrt{3}

Explanation:

The key is to examine \displaystyle \Delta AED in thie figure below:

Hexagon_50

Each interior angle of a regular hexagon, including \displaystyle \angle F, measures \displaystyle 120^{\circ }, so it can be easily deduced by way of the Isosceles Triangle Theorem that \displaystyle m \angle FEA = 30^{\circ }. To find \displaystyle m \angle AED we subtract \displaystyle m \angle FEA = 30^{\circ } from  \displaystyle m \angle FED = 120^{\circ }. Thus resullting in \displaystyle m \angle AED=90^{\circ}

Also, by symmetry,

\displaystyle m \angle EDA = \frac{1}{2} \cdot 120^{\circ } = 60^{\circ },

so \displaystyle m \angle EAD= 30^{\circ },

and \displaystyle \Delta AED is a \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangle whose short leg \displaystyle \overline{ED} has length \displaystyle ED = 1.

The long leg \displaystyle \overline{AE} of this \displaystyle 30^{\circ}-60^{\circ}-90^{\circ} triangle measures \displaystyle \sqrt{3} times the length of short leg \displaystyle \overline{ED}, so \displaystyle AE= \sqrt{3}.

Example Question #581 : Geometry

Hexagon

Note: Figure NOT drawn to scale.

The perimeter of the above hexagon is 888. Also, \displaystyle A-B = 10. Evaluate \displaystyle A.

Possible Answers:

\displaystyle A = 79

\displaystyle A = 93\frac{4}{5}

\displaystyle A = 60\frac{1}{2}

Insufficient information is given to answer the problem.

\displaystyle A = 116

Correct answer:

\displaystyle A = 79

Explanation:

The perimeter of the figure can be expressed in terms of the variables by adding:

\displaystyle A + B + A + B + \left (2A + 2B \right ) + \left (2A + 2B \right ) = P

Simplify and set \displaystyle P = 888:

\displaystyle A + A + 2A + 2A + B+ B +2B + 2B= 888

\displaystyle 6A + 6B= 888

\displaystyle 6\left (A + B \right )= 888

\displaystyle A + B = 148

Along with \displaystyle A-B = 10, we now have a system of equations to solve for \displaystyle A by adding:

\displaystyle A + B = 148

\displaystyle \underline{A-B =\; 10}

\displaystyle 2A = \; \; \; \; \; \; 158

\displaystyle A = 79

 

Example Question #1 : How To Find The Length Of The Side Of A Hexagon

Hexagon

Note: Figure NOT drawn to scale.

The perimeter of the above figure is 132. What is \displaystyle A + B ?

Possible Answers:

\displaystyle 33

\displaystyle 26\frac{2}{5}

\displaystyle 22

\displaystyle 16 \frac{1}{2}

\displaystyle 44

Correct answer:

\displaystyle 22

Explanation:

The perimeter of the figure can be expressed in terms of the variables by adding:

\displaystyle A + B + A + B + \left (2A + 2B \right ) + \left (2A + 2B \right ) = P

Simplify and set \displaystyle P = 132:

\displaystyle A + A + 2A + 2A + B+ B +2B + 2B= 132

\displaystyle 6A + 6B= 132

\displaystyle 6\left (A + B \right )= 132

\displaystyle A + B = 22

Example Question #581 : Geometry

Hexagon

Note: Figure NOT drawn to scale.

The perimeter of the above figure is 600. The ratio of \displaystyle A to \displaystyle B is \displaystyle 3:2. Evaluate \displaystyle B

Possible Answers:

\displaystyle B = 40

\displaystyle B = 72

\displaystyle B = 60

\displaystyle B = 48

\displaystyle B = 100

Correct answer:

\displaystyle B = 40

Explanation:

The perimeter of the figure can be expressed in terms of the variables by adding:

\displaystyle A + B + A + B + \left (2A + 2B \right ) + \left (2A + 2B \right ) = P

Simplify and set \displaystyle P = 600:

\displaystyle A + A + 2A + 2A + B+ B +2B + 2B= 600

\displaystyle 6A + 6B= 600

Since the ratio of \displaystyle A to \displaystyle B is equivalent to \displaystyle 3:2 - or

\displaystyle \frac{A}{B} = \frac{3}{2},

then 

\displaystyle A = \frac{3}{2} B

and we can substitute as follows:

\displaystyle 6 \cdot \frac{3}{2}B + 6B= 600

\displaystyle 9B + 6B= 600

\displaystyle 15B = 600

\displaystyle B = 40

Example Question #1 : How To Find An Angle In A Hexagon

Hexagon1

Possible Answers:

210

200

190

180

170

Correct answer:

190

Explanation:

Hexagon2Hexagon3

Learning Tools by Varsity Tutors