PSAT Math : How to multiply complex numbers

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Complex Numbers

Which of the following is equal to \displaystyle \left (3i \right )^{5}?

Possible Answers:

None of the other responses is correct.

\displaystyle -15i

\displaystyle 15i

\displaystyle -243i

\displaystyle 243i

Correct answer:

\displaystyle 243i

Explanation:

By the power of a product property, 

\displaystyle \left (3i \right )^{5} = 3^{5} \cdot i^{5} = 3^{5} \cdot i^{4} \cdot i = 243 \cdot 1 \cdot i = 243 i

Example Question #2 : How To Multiply Complex Numbers

Multiply:

\displaystyle (10 + 3i)(10-3i)

Possible Answers:

None of the other responses is correct.

\displaystyle 91

\displaystyle 100 + 9i

\displaystyle 109

\displaystyle 100 - 9i

Correct answer:

\displaystyle 109

Explanation:

This is the product of a complex number and its complex conjugate. They can be multiplied using the pattern

\displaystyle \left (A + Bi \right )\left (A - Bi \right ) = A^{2} + B^{2}

with \displaystyle A = 10, B = 3

\displaystyle (10 + 3i)(10-3i) = 10^{2} +3^{2} = 100 + 9 = 109

Example Question #2 : How To Multiply Complex Numbers

Which of the following is equal to \displaystyle i ^{-56} ?

Possible Answers:

\displaystyle 1

\displaystyle -56

\displaystyle i

\displaystyle -i

\displaystyle -1

Correct answer:

\displaystyle 1

Explanation:

\displaystyle i ^{-56} = \frac{1}{i^{56}}

\displaystyle 56 \div 4 = 14, so 56 is a multiple of 4. \displaystyle i raised to the power of any multiple of 4 is equal to 1, so

\displaystyle i ^{-56} = \frac{1}{i^{56}} = \frac{1}{1} = 1.

Example Question #13 : Complex Numbers

Which of the following is equal to \displaystyle (2i)^7?

Possible Answers:

\displaystyle 128i

\displaystyle -2i

\displaystyle 2i

\displaystyle -128i

\displaystyle 1

Correct answer:

\displaystyle -128i

Explanation:

The first step to solving this problem is distributing the exponent:

\displaystyle 2^7i^7 = 128i^7

Next, we need simplify the complex portion.

\displaystyle i^7=i^2\times i^2\times i^2\times i=-1\times -1\times -1\times i=-i

Thus, our final answer is \displaystyle 128\times (-i)=-128i.

Example Question #2 : How To Multiply Complex Numbers

What is the eighth power of \displaystyle 3i ?

Possible Answers:

\displaystyle 6,561i

None of the other responses is correct.

\displaystyle -24i

\displaystyle -6,561i

\displaystyle 24i

Correct answer:

None of the other responses is correct.

Explanation:

\displaystyle \left (3i \right )^{8}

\displaystyle = 3^{8} i^{8}

\displaystyle = 6,561 i^{8}

\displaystyle i raised to the power of any multiple of 4 is equal to 1, so the above expresion is equal to 

\displaystyle = 6,561 \cdot 1 = 6,561

This is not among the given choices.

Example Question #4 : How To Multiply Complex Numbers

What is the third power of \displaystyle 2 + i\sqrt{5} ?

Possible Answers:

\displaystyle 38 +7i\sqrt{5}

\displaystyle -22 +17i\sqrt{5}

\displaystyle -22 +7i\sqrt{5}

\displaystyle 38 +35i

\displaystyle -22 +35i

Correct answer:

\displaystyle -22 +7i\sqrt{5}

Explanation:

You are being asked to evaluate

\displaystyle \left (2 + i\sqrt{5} \right )^{3}

You can use the cube of a binomial pattern with \displaystyle A = 2, B = i\sqrt{5}:

\displaystyle \left ( A + B \right )^{3} = A^{3}+ 3A^{2}B + 3AB^{2}+ B^{3}

\displaystyle \left ( 2 + i\sqrt{5} \right )^{3} =2^{3}+ 3 \cdot 2^{2} \cdot i\sqrt{5} + 3 \cdot 2 (i\sqrt{5}) ^{2}+ (i\sqrt{5}) ^{3}

\displaystyle =8+ 3 \cdot 4 \cdot i\sqrt{5} + 6i ^{2} (\sqrt{5}) ^{2}+ i^{3}(\sqrt{5}) ^{3}

\displaystyle =8+12i\sqrt{5} + 6 (-1) 5+(-i)(5\sqrt{5})

\displaystyle =8-30 +12i\sqrt{5} -5i\sqrt{5}

\displaystyle =-22 +7i\sqrt{5}

Example Question #5 : How To Multiply Complex Numbers

What is the fourth power of \displaystyle 3 - i\sqrt{2} ?

Possible Answers:

\displaystyle 49- 132 i\sqrt{2}

\displaystyle -23-168i

\displaystyle 95-168i

Correct answer:

Explanation:

\displaystyle \left (3 - i\sqrt{2} \right )^{4} can be calculated by squaring \displaystyle 3 - i\sqrt{2}, then squaring the result, using the square of a binomial pattern as follows:

 

\displaystyle \left (3 - i\sqrt{2} \right )^{2}

\displaystyle =3^{2}- 2 \cdot 3 \cdot i\sqrt{2} +\left ( i\sqrt{2} \right )^{2}

\displaystyle =9- 6 i\sqrt{2} +2i^{2}

\displaystyle =9- 6 i\sqrt{2} +2(-1)

\displaystyle =7- 6 i\sqrt{2}

 

\displaystyle \left (3 - i\sqrt{2} \right )^{4}

\displaystyle =\left [ \left (3 - i\sqrt{2} \right )^{2} \right ]^{2}

Example Question #13 : Complex Numbers

Multiply \displaystyle 32+ 18i by its complex conjugate. What is the product?

Possible Answers:

\displaystyle 1,152

\displaystyle 700 + 1,152i

\displaystyle 700

\displaystyle 700 - 1,152i

\displaystyle 1,348

Correct answer:

\displaystyle 1,348

Explanation:

The product of any complex number \displaystyle a + bi and its complex conjugate \displaystyle a - bi is the real number \displaystyle a^{2}+b^{2}, so all that is needed here is to evaluate the expression:

\displaystyle 32^{2}+ 18 ^{2}= 1,024+ 324 = 1,348

Example Question #6 : How To Multiply Complex Numbers

What is the eighth power of \displaystyle 1+ i ?

Possible Answers:

The correct response is not given among the other choices.

\displaystyle 256i

\displaystyle 8 - 8i

\displaystyle 16

\displaystyle 8 + 8i

Correct answer:

\displaystyle 16

Explanation:

First, square \displaystyle 1+ i using the square of a binomial pattern as follows:

 

\displaystyle \left (1+ i \right )^{2}

\displaystyle = 1^{2}+ 2 \cdot 1 \cdot i + i^{2}

\displaystyle = 1 +2i -1

\displaystyle = 2i

 

Raising this number to the fourth power yields the correct response:

 

\displaystyle \left (1+ i \right )^{8}

\displaystyle = \left [\left (1+ i \right )^{2} \right ]^{4}

\displaystyle = (2i)^{4}

\displaystyle = (2 )^{4} \cdot i^{4}

\displaystyle =16 \cdot 1 = 16

Example Question #7 : How To Multiply Complex Numbers

What is the ninth power of \displaystyle -2i ?

Possible Answers:

\displaystyle -512 i

None of the other responses is correct.

\displaystyle 18i

\displaystyle -18i

\displaystyle 512 i

Correct answer:

\displaystyle -512 i

Explanation:

\displaystyle \left ( -2i\right )^{9}

\displaystyle = \left ( -2 \right )^{9} \cdot i^{9}

To raise a negative number to an odd power, take the absolute value of the base to that power and give its opposite:

\displaystyle \left ( -2\right )^{9} = - \left ( 2^{9}\right ) = -512

To raise \displaystyle i to a power, divide the power by 4 and raise \displaystyle i to the remainder. Since 

,

\displaystyle i^{9} = i^{1}= i

Therefore, 

\displaystyle \left ( -2i\right )^{9}= \left ( -2 \right )^{9} \cdot i^{9} = -512 i

Learning Tools by Varsity Tutors