PSAT Math : How to find the value of the coefficient

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Value Of The Coefficient

Give the coefficient of \displaystyle x^{2} in the product  

\displaystyle \left ( 2x + \frac{1}{3}\right ) \left ( x- \frac{1}{6}\right ) \left ( x+ \frac{1}{4}\right )

Possible Answers:

\displaystyle \frac{11}{12}

\displaystyle \frac{1}{4}

\displaystyle \frac{1}{6}

\displaystyle \frac{1}{2}

\displaystyle \frac{7}{6}

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two \displaystyle x terms and one constant are multiplied; find the three products and add them, as follows:

\displaystyle \left ( \underline{2x }+ \frac{1}{3}\right ) \left ( \underline{x}- \frac{1}{6}\right ) \left ( x\underline{+ \frac{1}{4}}\right )

\displaystyle 2x \cdot x \cdot \frac{1}{4} = \frac{1}{2}x^{2}

 

\displaystyle \left ( \underline{2x }+ \frac{1}{3}\right ) \left ( x \underline{- \frac{1}{6}}\right ) \left ( \underline{x}+ \frac{1}{4}\right )

\displaystyle 2x \cdot \left (- \frac{1}{6} \right ) \cdot x = - \frac{1}{3}x^{2}

 

\displaystyle \left ( 2x\underline{ + \frac{1}{3}}\right ) \left ( \underline{x}- \frac{1}{6}\right ) \left ( \underline{x}+ \frac{1}{4}\right )

\displaystyle \frac{1}{3} \cdot x \cdot x= \frac{1}{3}x^{2}

 

Add: \displaystyle \frac{1}{2}x^{2} +\left ( - \frac{1}{3}x^{2} \right ) + \frac{1}{3}x^{2} = \frac{1}{2}x^{2}

The correct response is \displaystyle \frac{1}{2}.

Example Question #2 : How To Find The Value Of The Coefficient

Give the coefficient of \displaystyle x^{5} in the binomial expansion of \displaystyle \left ( 2x+ 0.5\right )^{8}.

Possible Answers:

\displaystyle 26,880

\displaystyle 14

\displaystyle 224

\displaystyle 1,680

\displaystyle 1

Correct answer:

\displaystyle 224

Explanation:

If the expression \displaystyle \left ( A x + B\right )^{n} is expanded, then by the binomial theorem, the \displaystyle x^{k} term is

\displaystyle C(n, k) \cdot\left ( Ax \right )^{k} \cdot B ^{n - k}

\displaystyle = C(n, k) \cdot A ^{k} \cdot B ^{n - k} \cdot x^{k}

or, equivalently, the coefficient of \displaystyle x^{k} is 

\displaystyle C(n, k) \cdot A ^{k} \cdot B ^{n - k}

Therefore, the \displaystyle x^{5} coefficient can be determined by setting 

\displaystyle A = 2, B =0.5, k=5, n = 8:

\displaystyle C(8,5) \cdot 2^{5} \cdot 0.5 ^{8-5}

\displaystyle =C(8,5) \cdot 2^{5} \cdot 0.5 ^{3}

\displaystyle = 56\cdot 32 \cdot 0.125

\displaystyle =224

Example Question #3 : How To Find The Value Of The Coefficient

Give the coefficient of \displaystyle x^{4} in the binomial expansion of \displaystyle \left (6x+ \frac{1}{6}\right )^{7}.

Possible Answers:

\displaystyle 210

\displaystyle 5,040

\displaystyle \frac{35}{6}

\displaystyle 1

\displaystyle 140

Correct answer:

\displaystyle 210

Explanation:

If the expression \displaystyle \left ( A x + B\right )^{n} is expanded, then by the binomial theorem, the \displaystyle x^{k} term is

\displaystyle C(n, k) \cdot\left ( Ax \right )^{k} \cdot B ^{n - k}

\displaystyle = C(n, k) \cdot A ^{k} \cdot B ^{n - k} \cdot x^{k}

or, equivalently, the coefficient of \displaystyle x^{k} is 

\displaystyle C(n, k) \cdot A ^{k} \cdot B ^{n - k}

Therefore, the \displaystyle x^{4} coefficient can be determined by setting 

\displaystyle A = 6, B = \frac{1}{6}, n = 7, k= 4:

\displaystyle C(7,4) \cdot 6 ^{4} \cdot\left ( \frac{1}{6} \right ) ^{7-4}

\displaystyle =C(7,4) \cdot 6 ^{4} \cdot\left ( \frac{1}{6} \right ) ^{3}

\displaystyle =35 \cdot 1,296 \cdot \frac{1}{216}

\displaystyle = 210

Example Question #2 : How To Find The Value Of The Coefficient

Give the coefficient of \displaystyle x^{5} in the binomial expansion of \displaystyle \left ( 0.2x+ 5 \right )^{7}.

Possible Answers:

\displaystyle 0.168

\displaystyle 315,000

\displaystyle 2,625

\displaystyle 1

\displaystyle 20.16

Correct answer:

\displaystyle 0.168

Explanation:

If the expression \displaystyle \left ( A x + B\right )^{n} is expanded, then by the binomial theorem, the \displaystyle x^{k} term is

\displaystyle C(n, k) \cdot\left ( Ax \right )^{k} \cdot B ^{n - k}

\displaystyle = C(n, k) \cdot A ^{k} \cdot B ^{n - k} \cdot x^{k}

or, equivalently, the coefficient of \displaystyle x^{k} is 

\displaystyle C(n, k) \cdot A ^{k} \cdot B ^{n - k}

Therefore, the \displaystyle x^{5} coefficient can be determined by setting 

\displaystyle A = 0.2, B =5, k=5, n = 7

\displaystyle C(7,5) \cdot 0.2^{5} \cdot 5 ^{7 - 5}

\displaystyle = C(7,5) \cdot 0.2 ^{5} \cdot 5 ^{2}

\displaystyle = 21\cdot 0.00032 \cdot 25

\displaystyle = 0.168

Example Question #4 : How To Find The Value Of The Coefficient

Give the coefficient of \displaystyle x^{2} in the product

\displaystyle \left (3x- 7 \right ) \left ( 4x+3\right )\left ( 2x-7\right ).

Possible Answers:

\displaystyle 75

\displaystyle 46

\displaystyle 158

\displaystyle 10

\displaystyle -122

Correct answer:

\displaystyle -122

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two \displaystyle x terms and one constant are multiplied; find the three products and add them, as follows:

\displaystyle \left (\underline{3x}- 7 \right ) \left ( \underline{4x}+3\right )\left ( 2x\underline{-7}\right )

\displaystyle 3x \cdot 4x \cdot (-7) = -84x^{2}

 

\displaystyle \left (\underline{3x}- 7 \right ) \left ( 4x\underline{+3}\right )\left ( \underline{2x}-7\right )

\displaystyle 3x \cdot 3 \cdot 2x = 18x^{2}

 

\displaystyle \left (3x\underline{- 7} \right ) \left ( \underline{4x}+3\right )\left ( \underline{2x}-7\right )

\displaystyle -7 \cdot 4x \cdot 2x = -56x^{2}

 

Add: \displaystyle -84x^{2} + 18x^{2} - 56x^{2} = -122x^{2}

The correct response is -122.

Example Question #1 : How To Find The Value Of The Coefficient

Give the coefficient of \displaystyle x^{2} in the product  

\displaystyle \left ( x+ 0.4\right ) (x - 0.2) (3x-0.7).

Possible Answers:

\displaystyle 2.5

\displaystyle 0.7

\displaystyle -0.1

\displaystyle 0.5

\displaystyle 1.3

Correct answer:

\displaystyle -0.1

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two \displaystyle x terms and one constant are multiplied; find the three products and add them, as follows:

 

\displaystyle \left (\underline{ x}+ 0.4\right ) (\underline{x} - 0.2) (3x\underline{-0.7})

\displaystyle x \cdot x \cdot (-0.7) = -0.7x^{2}

 

\displaystyle \left (\underline{ x}+ 0.4\right ) (x \underline{-0.2})(\underline{3x}-0.7)

\displaystyle x \cdot (-0.2) \cdot 3x= -0.6x^{2}

 

\displaystyle \left (x+ \underline{0.4}\right ) (\underline{x} - 0.2)(\underline{3x}-0.7)

\displaystyle 0.4 \cdot x \cdot 3x = 1.2 x^{2}

 

Add: \displaystyle -0.7x^{2}+ (-0.6x^{2})+ 1.2x^{2} = -0.1x^{2}.

The correct response is \displaystyle -0.1.

Learning Tools by Varsity Tutors