All PSAT Math Resources
Example Questions
Example Question #2 : Binomials
Give the coefficient of in the product
While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two terms and one constant are multiplied; find the three products and add them, as follows:
Add:
The correct response is .
Example Question #1 : How To Find The Value Of The Coefficient
Give the coefficient of in the binomial expansion of .
If the expression is expanded, then by the binomial theorem, the term is
or, equivalently, the coefficient of is
Therefore, the coefficient can be determined by setting
:
Example Question #2 : How To Find The Value Of The Coefficient
Give the coefficient of in the binomial expansion of .
If the expression is expanded, then by the binomial theorem, the term is
or, equivalently, the coefficient of is
Therefore, the coefficient can be determined by setting
:
Example Question #3 : How To Find The Value Of The Coefficient
Give the coefficient of in the binomial expansion of .
If the expression is expanded, then by the binomial theorem, the term is
or, equivalently, the coefficient of is
Therefore, the coefficient can be determined by setting
Example Question #2 : How To Find The Value Of The Coefficient
Give the coefficient of in the product
.
While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two terms and one constant are multiplied; find the three products and add them, as follows:
Add:
The correct response is -122.
Example Question #1 : How To Find The Value Of The Coefficient
Give the coefficient of in the product
.
While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two terms and one constant are multiplied; find the three products and add them, as follows:
Add: .
The correct response is .