PSAT Math : Rational Expressions

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Add Rational Expressions With A Common Denominator

Simplify. 

\displaystyle \frac{2x+3}{x+2}+\frac{5x-6}{x+2}

Possible Answers:

\displaystyle \frac{7x-3}{2x+4}

\displaystyle \frac{5x-1}{2}

\displaystyle \frac{7x+9}{2x+4}

\displaystyle 5x-1

\displaystyle \frac{7x-3}{x+2}

Correct answer:

\displaystyle \frac{7x-3}{x+2}

Explanation:

\displaystyle \frac{2x-3}{x+2}+\frac{5x-6}{x+2}

Same denominator means you add straight across the numerators, keeping the denominator the same.

\displaystyle \frac{2x-3+5x-6}{x+2}

Add like terms. 

\displaystyle \frac{2x+5x+3-6}{x+2}

Final Answer. 

\displaystyle \frac{7x-3}{x+2}

Example Question #2 : How To Add Rational Expressions With A Common Denominator

Simplify.

\displaystyle \frac{x^{2}-4}{2x+8}+\frac{-12}{2x+8}

Possible Answers:

\displaystyle \frac{x-4}{2}

\displaystyle \frac{x-2}{6}

\displaystyle \frac{x^{2}-16}{2x+8}

\displaystyle \frac{x^{2}-2}{2x}

\displaystyle \frac{x^{2}-16}{x+4}

Correct answer:

\displaystyle \frac{x-4}{2}

Explanation:

\displaystyle \frac{x^{2}-4}{2x+8}+\frac{-12}{2x+8}

Check for same Denominator

\displaystyle \frac{x^{2}-4+(-12)}{2x+8}

Add like terms 

\displaystyle \frac{x^{2}-16}{2x+8}

Check for GCF or if the expression can be factored

\displaystyle \frac{(x-4)(x+4)}{2(x+4)}

After factoring, divide out like terms. \displaystyle x+4

\displaystyle \frac{(x-4)}{2}

Final Answer

Example Question #3 : How To Add Rational Expressions With A Common Denominator

Simplify the following rational expression: (9x - 2)/(x2) MINUS (6x - 8)/(x2)

Possible Answers:

\displaystyle 3x-10

\displaystyle \frac{15x+6}{x}

\displaystyle \frac{12x-6}{x}

\displaystyle \frac{3x+6}{x^{2}}

Correct answer:

\displaystyle \frac{3x+6}{x^{2}}

Explanation:

Since both expressions have a common denominator, x2, we can just recopy the denominator and focus on the numerators. We get (9x - 2) - (6x - 8). We must distribute the negative sign over the 6x - 8 expression which gives us 9x - 2 - 6x + 8 ( -2 minus a -8 gives a +6 since a negative and negative make a positive). The numerator is therefore 3x + 6.

Example Question #1 : Rational Expressions

Simplify the expression.

\displaystyle \frac{x}{2x+4}+\frac{x}{x+2}

Possible Answers:

\displaystyle \frac{2x}{3x+6}

\displaystyle \frac{1}{2x+4}

\displaystyle \frac{x}{x+2}

\displaystyle \frac{x+1}{2x+4}

\displaystyle \frac{3x}{2x+4}

Correct answer:

\displaystyle \frac{3x}{2x+4}

Explanation:

To add rational expressions, first find the least common denominator. Because the denominator of the first fraction factors to 2(x+2), it is clear that this is the common denominator. Therefore, multiply the numerator and denominator of the second fraction by 2.

\displaystyle \frac{x}{2x+4}+\frac{x}{x+2}

\displaystyle \frac{x}{2x+4}+\frac{(2)x}{(2)(x+2)}

\displaystyle \frac{x}{2x+4}+\frac{2x}{2x+4}

\displaystyle \frac{3x}{2x+4}

This is the most simplified version of the rational expression.

 

Example Question #12 : Rational Expressions

If √(ab) = 8, and a= b, what is a?

Possible Answers:

4

16

2

10

64

Correct answer:

4

Explanation:

If we plug in a2 for b in the radical expression, we get √(a3) = 8. This can be rewritten as a3/2 = 8. Thus, loga 8 = 3/2. Plugging in the answer choices gives 4 as the correct answer. 

Example Question #2 : Rational Expressions

Function_part1

 

Possible Answers:

–37/15

–11/5

9/5

37/15

–9/5

Correct answer:

–11/5

Explanation:

Fraction_part2

Fraction_part3

Example Question #1 : How To Subtract Rational Expressions With Different Denominators

Simplify.

\displaystyle \frac{x+5}{x}-\frac{2x-3}{x^{2}}

Possible Answers:

\displaystyle 3x+3

\displaystyle \frac{x^{2}+3x+3}{x^{2}}

\displaystyle 7x+3

\displaystyle x+6

\displaystyle \frac{x^{2}+7x+3}{x^{2}}

Correct answer:

\displaystyle \frac{x^{2}+3x+3}{x^{2}}

Explanation:

\displaystyle \frac{x+5}{x}-\frac{2x-3}{x^{2}}

Determine an LCD (Least Common Denominator) between \displaystyle x and \displaystyle x^{2}.

LCD = \displaystyle x^{2}

\displaystyle \frac{x(x+5)}{(x)x}-\frac{2x-3}{x^{2}}

Multiply the top and bottom of the first rational expression by \displaystyle x, so that the denominator will be \displaystyle x^{2}.

Distribute the \displaystyle x to \displaystyle x+5.

\displaystyle \frac{x^{2}+5x}{x^{2}}-\frac{2x-3}{x^{2}}

Now you can subtract because both rational expressions have the same denominators.

\displaystyle \frac{x^{2}+5x-2x+3}{x^{2}}

Final Answer. 

\displaystyle \frac{x^{2}+3x+3}{x^{2}}

Example Question #1 : How To Divide Rational Expressions

Which of the following is equivalent to \dpi{100} \frac{(\frac{1}{t}-\frac{1}{x})}{x-t} ? Assume that denominators are always nonzero.

Possible Answers:

(xt)^{-1}\displaystyle (xt)^{-1}

\frac{x}{t}\displaystyle \frac{x}{t}

x-t\displaystyle x-t

t-x\displaystyle t-x

x^{2}-t^{2}\displaystyle x^{2}-t^{2}

Correct answer:

(xt)^{-1}\displaystyle (xt)^{-1}

Explanation:

We will need to simplify the expression \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}\displaystyle \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}. We can think of this as a large fraction with a numerator of \frac{1}{t}-\frac{1}{x}\displaystyle \frac{1}{t}-\frac{1}{x} and a denominator of \dpi{100} x-t.

In order to simplify the numerator, we will need to combine the two fractions. When adding or subtracting fractions, we must have a common denominator. \frac{1}{t}\displaystyle \frac{1}{t} has a denominator of \dpi{100} t, and \dpi{100} -\frac{1}{x} has a denominator of \dpi{100} x. The least common denominator that these two fractions have in common is \dpi{100} xt. Thus, we are going to write equivalent fractions with denominators of \dpi{100} xt.

In order to convert the fraction \dpi{100} \frac{1}{t} to a denominator with \dpi{100} xt, we will need to multiply the top and bottom by \dpi{100} x.

\frac{1}{t}=\frac{1\cdot x}{t\cdot x}=\frac{x}{xt}\displaystyle \frac{1}{t}=\frac{1\cdot x}{t\cdot x}=\frac{x}{xt}

Similarly, we will multiply the top and bottom of \dpi{100} -\frac{1}{x} by \dpi{100} t.

\frac{1}{x}=\frac{1\cdot t}{x\cdot t}=\frac{t}{xt}\displaystyle \frac{1}{x}=\frac{1\cdot t}{x\cdot t}=\frac{t}{xt}

We can now rewrite \frac{1}{t}-\frac{1}{x}\displaystyle \frac{1}{t}-\frac{1}{x} as follows:

\frac{1}{t}-\frac{1}{x}\displaystyle \frac{1}{t}-\frac{1}{x} = \frac{x}{xt}-\frac{t}{xt}=\frac{x-t}{xt}\displaystyle \frac{x}{xt}-\frac{t}{xt}=\frac{x-t}{xt}

Let's go back to the original fraction \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}\displaystyle \frac{(\frac{1}{t}-\frac{1}{x})}{x-t}. We will now rewrite the numerator:

\frac{(\frac{1}{t}-\frac{1}{x})}{x-t}\displaystyle \frac{(\frac{1}{t}-\frac{1}{x})}{x-t} = \frac{\frac{x-t}{xt}}{x-t}\displaystyle \frac{\frac{x-t}{xt}}{x-t}

To simplify this further, we can think of \frac{\frac{x-t}{xt}}{x-t}\displaystyle \frac{\frac{x-t}{xt}}{x-t} as the same as \frac{x-t}{xt}\div (x-t)\displaystyle \frac{x-t}{xt}\div (x-t) . When we divide a fraction by another quantity, this is the same as multiplying the fraction by the reciprocal of that quantity. In other words, a\div b=a\cdot \frac{1}{b}\displaystyle a\div b=a\cdot \frac{1}{b}.

 

\frac{x-t}{xt}\div (x-t)\displaystyle \frac{x-t}{xt}\div (x-t) = \frac{x-t}{xt}\cdot \frac{1}{x-t}\displaystyle \frac{x-t}{xt}\cdot \frac{1}{x-t}=\frac{x-t}{xt(x-t)}\displaystyle =\frac{x-t}{xt(x-t)}= \frac{1}{xt}\displaystyle = \frac{1}{xt}

Lastly, we will use the property of exponents which states that, in general, \frac{1}{a}=a^{-1}\displaystyle \frac{1}{a}=a^{-1}.

\frac{1}{xt}=(xt)^{-1}\displaystyle \frac{1}{xt}=(xt)^{-1}

The answer is (xt)^{-1}\displaystyle (xt)^{-1}.

Example Question #2 : Rational Expressions

Simplify (4x)/(x– 4) * (x + 2)/(x– 2x)

Possible Answers:

(4x+ 8x)/(x+ 8x)

x/(x + 2)

4/(x + 2)2

4/(x – 2)2

x/(x – 2)2

Correct answer:

4/(x – 2)2

Explanation:

Factor first.  The numerators will not factor, but the first denominator factors to (x – 2)(x + 2) and the second denomintaor factors to x(x – 2).  Multiplying fractions does not require common denominators, so now look for common factors to divide out.  There is a factor of x and a factor of (x + 2) that both divide out, leaving 4 in the numerator and two factors of (x – 2) in the denominator.

Example Question #7 : Rational Expressions

what is 6/8 X 20/3

Possible Answers:
9/40
18/160
3/20
120/11
5
Correct answer: 5
Explanation:

6/8 X 20/3 first step is to reduce 6/8 -> 3/4 (Divide top and bottom by 2)

3/4 X 20/3 (cross-cancel the threes and the 20 reduces to 5 and the 4 reduces to 1)

1/1 X 5/1 = 5

Learning Tools by Varsity Tutors