All PSAT Math Resources
Example Questions
Example Question #491 : High School: Algebra
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #191 : Equations / Inequalities
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #192 : Equations / Inequalities
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #193 : Equations / Inequalities
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #541 : New Sat
Complete the square to calculate the maximum or minimum point of the given function.
Completing the square method uses the concept of perfect squares. Recall that a perfect square is in the form,
where when multiplied out,
the middle term coefficient, when divided by two and squared, results in the coefficient of the last term.
Complete the square for this particular function is as follows.
First identify the middle term coefficient.
Now divide the middle term coefficient by two.
From here write the function with the perfect square. Remember when adding the new squared term, add it to both sides to keep the equation balanced.
When simplified the new function is,
Since the term is positive, the parabola will be opening up. This means that the function has a minimum value at the vertex. To find the value of the vertex set the inside portion of the binomial equal to zero and solve.
From here, substitute the the value into the original function.
Therefore the minimum value occurs at the point .
Example Question #542 : New Sat
Complete the square to calculate the maximum or minimum point of the given function.
Completing the square method uses the concept of perfect squares. Recall that a perfect square is in the form,
where when multiplied out,
the middle term coefficient, when divided by two and squared, results in the coefficient of the last term.
Complete the square for this particular function is as follows.
First identify the middle term coefficient.
Now divide the middle term coefficient by two.
From here write the function with the perfect square. Remember when adding the new squared term, add it to both sides to keep the equation balanced.
When simplified the new function is,
Since the term is positive, the parabola will be opening up. This means that the function has a minimum value at the vertex. To find the value of the vertex set the inside portion of the binomial equal to zero and solve.
From here, substitute the the value into the original function.
Therefore the minimum value occurs at the point .
Example Question #543 : New Sat
Complete the square to calculate the maximum or minimum point of the given function.
Completing the square method uses the concept of perfect squares. Recall that a perfect square is in the form,
where when multiplied out,
the middle term coefficient, when divided by two and squared, results in the coefficient of the last term.
Complete the square for this particular function is as follows.
First identify the middle term coefficient.
Now divide the middle term coefficient by two.
From here write the function with the perfect square.
When simplified the new function is,
Since the term is positive, the parabola will be opening up. This means that the function has a minimum value at the vertex. To find the value of the vertex set the inside portion of the binomial equal to zero and solve.
From here, substitute the the value into the original function.
Therefore the minimum value occurs at the point .
Example Question #4 : Graphing Quadratics & Polynomials
Complete the square to calculate the maximum or minimum point of the given function.
Completing the square method uses the concept of perfect squares. Recall that a perfect square is in the form,
where when multiplied out,
the middle term coefficient, when divided by two and squared, results in the coefficient of the last term.
Complete the square for this particular function is as follows.
First identify the middle term coefficient.
Now divide the middle term coefficient by two.
From here write the function with the perfect square.
When simplified the new function is,
Since the term is positive, the parabola will be opening up. This means that the function has a minimum value at the vertex. To find the value of the vertex set the inside portion of the binomial equal to zero and solve.
From here, substitute the the value into the original function.
Therefore the minimum value occurs at the point .
Example Question #51 : Seeing Structure In Expressions
Complete the square to calculate the maximum or minimum point of the given function.
Completing the square method uses the concept of perfect squares. Recall that a perfect square is in the form,
where when multiplied out,
the middle term coefficient, when divided by two and squared, results in the coefficient of the last term.
Complete the square for this particular function is as follows.
First identify the middle term coefficient.
Now divide the middle term coefficient by two.
From here write the function with the perfect square.
When simplified the new function is,
Since the term is positive, the parabola will be opening up. This means that the function has a minimum value at the vertex. To find the value of the vertex set the inside portion of the binomial equal to zero and solve.
From here, substitute the the value into the original function.
Therefore the minimum value occurs at the point .
Example Question #52 : Seeing Structure In Expressions
Complete the square to calculate the maximum or minimum point of the given function.
Completing the square method uses the concept of perfect squares. Recall that a perfect square is in the form,
where when multiplied out,
the middle term coefficient, when divided by two and squared, results in the coefficient of the last term.
Complete the square for this particular function is as follows.
First identify the middle term coefficient.
Now divide the middle term coefficient by two.
From here write the function with the perfect square.
When simplified the new function is,
Since the term is positive, the parabola will be opening up. This means that the function has a minimum value at the vertex. To find the value of the vertex set the inside portion of the binomial equal to zero and solve.
From here, substitute the the value into the original function.
Therefore the minimum value occurs at the point .
Certified Tutor