All PSAT Math Resources
Example Questions
Example Question #591 : Algebra
Define the function as follows:
Give the domain of .
The numerator, being a polynomial, is not restricting our domain. The domain is, however, restricted by the polynomial in the denominator, which must be nonzero. Therefore, we set the denominator equal to zero to determine the excluded values:
Therefore, the domain of is the set of all real numbers except - that is,
Example Question #2 : How To Find Excluded Values
Define the function as follows:
Give the domain of .
The domain of is restricted by two different denominators, neither of which can be equal to 0, so the excluded values are:
The correct response is therefore .
Example Question #2 : How To Find Excluded Values
Define the function as follows:
Give the domain of .
The numerator, being a polynomial, does not restrict our domain. The denominator, however, does restrict it to the values for which it is not equal to 0. We set the denominator equal to 0 to find the excluded values:
The domain, in interval notation, is therefore
.
Example Question #2 : Algebraic Fractions
Define the function on the set of real numbers as follows:
Give the domain of .
The domain of is restricted by two things.
First, the expression within the radical in the numerator must be nonnegative. We therefore solve for in the inequality
,
or, in interval notation,
Second, the expression in the denominator must be nonzero. Therefore, we set the denominator equal to zero to determine the excluded value(s):
We exclude 4 from , so the correct response is
Example Question #1 : How To Find Excluded Values
Define the function on the set of real numbers as follows:
Give the domain of .
There are two things restricting the domain of .
One is the radical symbol in the numerator. The expression inside the radical must be nonnegative, so solve the inequality:
,
or, in interval notation,
The other is the denominator, which must be equal to 0, so set, and solve for in, the equation:
is already excluded from the domain; we exclude 4, so the domain is
.
Example Question #3 : Algebraic Fractions
Define the function on the real numbers as follows:
Give the domain of .
The numerator, being a polynomial, is not restricting our domain. The domain is, however, restricted by the expression in the denominator, which must be nonzero. Furthermore, the radicand must be nonnegative. Combined, these facts mean that the radicand must be positive, and that the following inequality be solved:
or, equivalently, .
In interval form, this is
Example Question #1 : Algebraic Fractions
Define the functions and as follows:
and
Give the domain of the function .
The domain of the product of two functions is the intersection of the domains of the individual functions.
The domain of is restricted to all values of that yield a nonzero denominator. Since this means that
,
then, subsequently,
,
so the domain is the set of all real numbers except 4.
Similarly, the domain of is restricted to all values of that yield a nonzero denominator. This set is found to be the set of all real numbers except 7.
The intersection of these sets is the set of all real numbers except 4 and 7, or
.
Example Question #2 : How To Find Excluded Values
Define the function as follows:
Give the domain of .
The definition of has two denominators of two fractions (one within the other), so we must exclude the values of that make either denominator equal to zero.
One denominator is . Since it cannot be zero, we have
,
and, subsequently,
.
The value 2 is excluded from the domain.
The other denominator is . If it is equal to zero, then
Therefore, this value is also excluded from the domain.
The correct domain is the set .
Example Question #3 : How To Find Excluded Values
Define the function as follows:
Give the domain of .
The numerator , being a polynomial, does not restrict the domain.
appears as a radicand of a square root in the definition of , so must be restricted to nonnegative numbers. Also, is a denominator, which means 0 must also be excluded. Therefore, we are restricted so far to positive numbers.
There is one more denominator, which is ; it must be nonzero. We set this equal to zero to determine any additional value(s) that must be excluded:
Therefore, the domain is the set of all positive numbers except 9 - or
.
Example Question #2 : How To Find Excluded Values
Which of the following are answers to the equation below?
I. -3
II. -2
III. 2
I only
I, II, and III
II and III
III only
II only
III only
Given a fractional algebraic equation with variables in the numerator and denominator of one side and the other side equal to zero, we rely on a simple concept. Zero divided by anything equals zero. That means we can focus in on what values make the numerator (the top part of the fraction) zero, or in other words,
The expression is a difference of squares that can be factored as
Solving this for gives either or . That means either of these values will make our numerator equal zero. We might be tempted to conclude that both are valid answers. However, our statement earlier that zero divided by anything is zero has one caveat. We can never divide by zero itself. That means that any values that make our denominator zero must be rejected. Therefore we must also look at the denominator.
The left side factors as follows
This means that if is or , we end up dividing by zero. That means that cannot be a valid solution, leaving as the only valid answer. Therefore only #3 is correct.
Certified Tutor