All PSAT Critical Reading Resources
Example Questions
Example Question #1 : Determining Authorial Purpose In Narrative Science Passages
Adapted from Ice-Caves of France and Switzerland by George Forrest Browne (1865)
This account states that the cave is in the county of Thorn, among the lowest spurs of the Carpathians. The entrance, which faces the north, and is exposed to the cold winds from the snowy part of the Carpathian range, is eighteen fathoms high and nine broad; and the cave spreads out laterally, and descends to a point fifty fathoms below the entrance, where it is twenty-six fathoms in breadth, and of irregular height. Beyond this no one had at that time penetrated, on account of the unsafe footing, although many distant echoes were returned by the farther recesses of the cave; indeed, to get even so far as this, much step-cutting was necessary.
When the external frost of winter comes on, the account proceeds, the effect in the cave is the same as if fires had been lighted there: the ice melts, and swarms of flies and bats and hares take refuge in the interior from the severity of the winter. As soon as spring arrives, the warmth of winter disappears from the interior, water exudes from the roof and is converted into ice, while the more abundant supplies which pour down on to the sandy floor are speedily frozen there. In the dog-days, the frost is so intense that a small icicle becomes in one day a huge mass of ice; but a cool day promptly brings a thaw, and the cave is looked upon as a barometer, not merely feeling, but also presaging, the changes of weather. The people of the neighborhood, when employed in field-work, arrange their labour so that the mid-day meal may be taken near the cave, when they either ice the water they have brought with them, or drink the melted ice, which they consider very good for the stomach. It had been calculated that six hundred weekly carts would not be sufficient to keep the cavern free from ice. The ground above the cave is peculiarly rich in grass.
In explanation of these phenomena, Bell threw out the following suggestions, which need no comment. The earth being of itself cold and damp, the external heat of the atmosphere, by partially penetrating into the ground, drives in this native cold to the inner parts of the earth, and makes the cold there more dense. On the other hand, when the external air is cold, it draws forth towards the surface the heat there may be in the inner part of the earth, and thus makes caverns warm. In support and illustration of this view, he states that in the hotter parts of Hungary, when the people wish to cool their wine, they dig a hole two feet deep, and place in it the flagon of wine, and, after filling up the hole again, light a blazing fire upon the surface, which cools the wine as if the flagon had been laid in ice. He also suggests that possibly the cold winds from the Carpathians bring with them imperceptible particles of snow, which reach the water of the cave, and convert it into ice. Further, the rocks of the Carpathians abound in salts, niter, alum, etc., which may, perhaps, mingle with such snowy particles, and produce the ordinary effect of the snow and salt in the artificial production of ice.
Which of the following sentences best describes the function of the first paragraph within the passage as a whole?
An argument about incorrect information which is being circulated about the cave, particularly about depth
A brief introduction, explaining the location and the existing knowledge about the cave and its shape
A lengthy summation of all of the information available to the author on the cave
A description of the woeful state of the cave at the time of the author's arrival there
A manifesto of what the author hopes to achieve in his study of the cave and the details he was given about it
A brief introduction, explaining the location and the existing knowledge about the cave and its shape
The first paragraph introduces the topic of the cave by discussing its location and general characteristics. It does not argue, give all the information about the cave, describe the poor state of the cave, or state what the author hopes to achieve.
Example Question #1 : Analyzing Sequence, Organization, And Structure In Natural Science Passages
Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)
Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.
I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.
Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of Tinea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.
This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."
In the third paragraph the information about Swammerdam's name for the moth serves to __________.
show how much of a menace it has always been to bees
mock the moth as something feared yet destroyable
show that Swammerdam was not scientific in his approach to bee keeping
suggest that the bee-moth preys on other insects besides bees
show that in the seventeenth century people were ill-educated in the fields of science and nature
show how much of a menace it has always been to bees
The author refers to Swammerdam's name for the moths as “the very expressive name” and as we can see the name “bee-wolf” tells us as a reader that even in Swammerdam's time the bee was a menace. The name, and its inclusion in the passage, serves to prove that the bee-moth has been long thought of as a menace to bees.
Example Question #1 : Argumentative Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
The main reason the author mentions Howell’s story is __________.
to argue for putting a fence up around Yellowstone National Park to keep out poachers
to suggest that the loss of bison is a more important problem than those caused by the gypsy moth
to provide an account that shows how bad it is that environmental offenders cannot be legally punished
to attack Howell’s actions as reprehensible
to lament the loss of the United States’ first national bison herd
to provide an account that shows how bad it is that environmental offenders cannot be legally punished
This question may initially seem tricky because Howell’s story accomplishes many of the answer choices’ statements: the author does attack Howell’s actions as reprehensible, and he does lament the loss of the United States’ first national bison herd. However, this are consequences of the story, not reasons why the author brought it up in the first place. The only answer choice that explains why the author mentions the story is “to provide an account that shows how bad it is that environmental offenders cannot be legally punished,” so this is the correct answer.
Example Question #2 : Analyzing Sequence, Organization, And Structure In Natural Science Passages
"The Cell Cycle" by Joseph Ritchie (2014)
The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.
Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.
The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.
The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.
Which of the following lists the steps of mitosis in the order in which they occur?
Prophase, prometaphase, metaphase, anaphase, telophase and cytokinesis
First gap phase, synthesis phase, second gap phase
Prometaphase, metaphase, anaphase, prophase, telophase and cytokinesis
Synthesis phase, first gap phase, second gap phase
Prophase, prometaphase, metaphase, anaphase, telophase and cytokinesis
The third paragraph discusses mitosis, and talks about prophase, then prometaphase, then metaphase, then anaphase, then telophase and cytokinesis, so this is the correct order. The answer choices that discuss the first gap phase, synthesis phase, and the second gap phase are referring to the stages of interphase, not mitosis, so it's important to make this distinction while reading!
Example Question #3 : Analyzing Sequence, Organization, And Structure In Natural Science Passages
"The Cell Cycle" by Joseph Ritchie (2014)
The process by which cells divide and multiply is known as the cell cycle. This cycle consists of two main phases: interphase and mitosis. Each phase consists of a series of clearly defined and observable steps. At the conclusion of the cycle, each parent cell produces two genetically identical daughter cells that may also replicate by proceeding through the cell cycle.
Roughly ninety percent of the cell cycle is spent in interphase. Interphase is comprised of three main steps: the first gap phase, the synthesis phase (also called "S phase"), and the second gap phase. The initial gap phase is a period of cellular preparation in which the cell increases in size and readies itself for DNA synthesis. In the synthesis phase, or S phase, DNA replication occurs, so that when the cell divides, each daughter cell will have the DNA necessary to function properly. In the second gap phase, the cell grows in size and prepares for cellular division in the mitotic phase. At the end of each gap phase, the cell has to pass a regulatory checkpoint to ensure that nothing is going wrong. If anything has gone wrong, the checkpoints stop the cell from proceeding through the cell cycle any further.
The next part of the cell cycle is mitosis. Mitosis is a form of cell division and is broken down into five distinct phases. During prophase, the genetic material contained in the cell’s chromatin condenses into distinct chromosomes. Prometaphase is marked by the breakdown of the cell’s nuclear envelope and the formation of centrosomes at the poles of the cell. During metaphase, the cell’s chromosomes are moved to the center of the cell. A checkpoint ensures that the chromosomes are properly aligned on the center and halts the cell cycle if any errors have occurred. In anaphase, chromosomes break apart at their center, or centromere, and sister chromatids move to opposite ends of the cell. Lastly, telophase and cytokinesis occur as nuclear membranes form to physically divide the cell into two new daughter cells. Chromosomes also unwind into loose chromatin during this part of mitosis. Cytokinesis is defined as the division of the each cell’s cytoplasm and organelles. At the conclusion of the cell cycle, two genetically identical daughter cells have formed.
The cell cycle operates by a series of checkpoints and external cues. This system of checks enables the cell to enter a state of dormancy known as the gap zero phase when conditions or other factors inhibit the cell cycle. Conversely, unregulated and uncontrolled cellular division can occur under certain circumstances. A cell in a state of uncontrolled division is known to be cancerous. Lastly, cells have the ability to mediate their own death by way of apoptosis if certain genetic or physical abnormalities exist. The cell cycle is a complex process that enables cells to replicate and proliferate under a stringent set of checks and balances that produce healthy and viable daughter cells that are each able to perform the process in the future.
Where does DNA synthesis and replication occur in the cell cycle?
Metaphase
Prophase
S phase
Telophase
S phase
The S phase, or synthesis phase, of interphase is where DNA replication and synthesis take place. This occurs before mitotic division of the nucleus. The other answers are incorrect because they take place during mitosis. The DNA needs to be replicaed before mitosis occurs, or each daughter cell will not receive enough DNA to function properly.
Example Question #3 : Analyzing Sequence In Natural Science Passages
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
In the context of the passage as a whole, the fourth paragraph serves to __________.
provide more historical details about how the Labrador feather voyages were organized
compare and contrast Icelandic and North American down-harvesting methods
describe why eider down is a valuable commodity
describe some of the benefits of the Labrador feather voyages
detail further repercussions of the Labrador feather voyages
detail further repercussions of the Labrador feather voyages
Let’s look at what each paragraph is accomplishing in the context of the passage as a whole:
First paragraph: introduces and describes eider down
Second paragraph: describes Icelandic method of collecting eider down, which protects the duck population
Third paragraph: describes the North American method of collecting eider down, which destroys the duck population
Fourth paragraph: suggests that the Labrador feather voyages may have contributed to the extinction of the Labrador duck and says that they stopped because the duck populations were so much smaller that the trips were no longer profitable
Now that we have considered the structure of the passage’s argument as a whole, it should be easier to answer this question. “Compare and contrast Icelandic and North American down-harvesting methods” describes the second and third paragraphs, whereas “describe why eider down is a valuable commodity” describes the first paragraph. The Labrador feather voyages are cast in a negative light throughout the entire passage, so “describe some of the benefits of the Labrador feather voyages” cannot be the correct answer as benefits of them are never discussed. The fourth paragraph does not “provide more historical details about how the Labrador feather voyages were organized”; it describes their aftermath, so this answer choice cannot be correct. That the fourth paragraph serves to “detail further repercussions of the Labrador feather voyages” is the best answer choice. It discusses the effects of the Labrador feather voyages on the duck population and suggests that they may have contributed to the extinction of a particular species of duck that had a limited habitat.
Example Question #131 : Natural Science Passages
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. “The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
Data gathered from a survey of the colors of different types of Arctic flowers is presented __________.
at the beginning of the second paragraph
at the beginning of the first paragraph
at the end of the first paragraph
nowhere in the passage
at the end of the second paragraph
at the end of the second paragraph
This evidence is introduced at the end of the second paragraph, where the author says, "The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south."
Example Question #2 : Analyzing Sequence, Organization, And Structure In Natural Science Passages
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
Paragraph four of the passage discusses which of the following?
the theory of evolution.
the reasons why a spider monkey’s wrist and fingers can resemble a bat's wing or a whale's fin.
the physiological functions of the spider monkey’s wrist and fingers, the bat’s wing, and the whale’s fin.
the unreliability of physical characteristics in determining species relatedness.
the reasons why a spider monkey’s wrist and fingers can resemble a bat's wing or a whale's fin.
One of paragraph four's central purposes is to give examples of homologous adaptation. It describes how the features of different species can possess anatomical similarities, even if the species are from vastly different habitats. The passage does not discuss the theory of evolution nor the physiological purposes of certain appendages, and the third paragraph, not the fourth, discusses the unreliability of physical characteristics in determining species relatedness.
Certified Tutor
Certified Tutor