Precalculus : Products and Quotients of Complex Numbers in Polar Form

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Products And Quotients Of Complex Numbers In Polar Form

Find the value of \displaystyle {}(1+i)^{100},where \displaystyle i the complex number is given by \displaystyle {}i^2=-1.

Possible Answers:

\displaystyle {}-i2^{100}

\displaystyle {}-2^{100}

\displaystyle {}i2^{100}

\displaystyle {}-2^{50}

\displaystyle {}2^{101}

Correct answer:

\displaystyle {}-2^{50}

Explanation:

We note that \displaystyle {}(1+i)^{2}=1+2i+i^2=1+2i-1=2i by FOILing.

 

We also know that:

\displaystyle (z)^{nm}=(z^{n})^{m}

 We have by using the above rule: n=2 , m=50

\displaystyle (1+i)^{100}=((1+i)^{2})^{50}

Since we know that,

\displaystyle {}(1+i)^{2}=1+2i+i^2=1+2i-1=2i

 

We have then:

\displaystyle (1+i)^{100}=((1+i)^{2})^{50}\displaystyle =(2i)^{50}

 

Since we know that:

\displaystyle (ab)^{n}=a^{n}b^{n}, we use a=2 ,b=i

We have then:

 

Example Question #441 : Pre Calculus

Compute the following sum:

\displaystyle {}1+i+i^2+i^3....+i^{2015}. Remember \displaystyle {}i is the complex number satisfying \displaystyle {}i^{2}=-1.

Possible Answers:

\displaystyle 0

\displaystyle {}-i

\displaystyle {}\frac{1}{1-i}

\displaystyle {}i

\displaystyle {}\frac{i}{i-1}

Correct answer:

\displaystyle 0

Explanation:

Note that this is a geometric series.

Therefore we have:

\displaystyle {}1+i+i^2....+i^{2015}=\frac{1-i^{2016}}{1-i}

Note that,

  \displaystyle {}i^{2016}= \displaystyle {}({i}^{2})^{1008} and since \displaystyle {}i^2=-1  we have \displaystyle {}{-1}^{1008}=1.

\displaystyle \frac{1-1}{1-i}=\frac{0}{1-i}=0 

this shows that the sum is 0.

 

Example Question #1 : Polar Coordinates And Complex Numbers

Find the following product.

\displaystyle {}(1-i)^{n}(1+i)^n

Possible Answers:

\displaystyle {}2^{n-1}

\displaystyle {}2i^{n}

\displaystyle {}2

\displaystyle {}2^{n}

\displaystyle {}-2i^{n}

Correct answer:

\displaystyle {}2^{n}

Explanation:

Note that by FOILing the two binomials we get the following:

\displaystyle {}(1+i)(1-i)=1-i+i-i^2=2

Therefore,

\displaystyle {}(1-i)^{n}(1-i)^{n}=2^{n}

Example Question #2 : Products And Quotients Of Complex Numbers In Polar Form

Compute the magnitude of \displaystyle {}(1+i)^{n}.

Possible Answers:

\displaystyle {}(1-\sqrt{2})^n

\displaystyle {}(\sqrt{2})^n+1

\displaystyle {}(\sqrt{2})^{n+1}

\displaystyle {}(\sqrt{2})^n

\displaystyle {}(\sqrt{2})^n-1

Correct answer:

\displaystyle {}(\sqrt{2})^n

Explanation:

We have

\displaystyle {}|(1+i)|=\sqrt{2}

We know that \displaystyle {}|z^n|=|z|^n

Thus this gives us,

\displaystyle {}|(1+i)^n|=|1+i|^{n}=(\sqrt{2})^{n}.

Example Question #2 : Polar Coordinates And Complex Numbers

Evaluate:

\displaystyle (2+i)\cdot(1+4i)

Possible Answers:

\displaystyle i^2

\displaystyle 9i-2

\displaystyle 9

\displaystyle 5i-7

\displaystyle i+4

Correct answer:

\displaystyle 9i-2

Explanation:

To evaluate this problem we need to FOIL the binomials.

\displaystyle (2+i)(1+4i)

\displaystyle =2(1)+2(4i)+1(i)+4i^2

\displaystyle =2+9i+4i^2

Now recall that \displaystyle i^2=-1

Thus,

\displaystyle =2+9i-4

\displaystyle =9i-2

Example Question #3 : Polar Coordinates And Complex Numbers

Find the product \displaystyle ab, if

\displaystyle a=3+7i\:\:\:b=1-i.

Possible Answers:

\displaystyle 3+4i

\displaystyle 3-3i

\displaystyle 3-7i

\displaystyle 10+4i

Correct answer:

\displaystyle 10+4i

Explanation:

To find the product \displaystyle ab, FOIL the complex numbers. FOIL stands for the multiplication of the Firsts, Outers, Inners, and Lasts.

Using this method we get the following,

\displaystyle ab=(3+7i)(1-i)=3-3i+7i-7i^2=3+4i-7i^2

and because \displaystyle i^2=-1

\displaystyle =3+4i-7(-1)=3+4i+7=10+4i.

Example Question #1 : Find The Product Of Complex Numbers

Simplify:  \displaystyle i^4 \times i^3

Possible Answers:

\displaystyle 1

\displaystyle i

\displaystyle i+\sqrt{-1}

\displaystyle -i

\displaystyle -1

Correct answer:

\displaystyle -i

Explanation:

The expression \displaystyle i^4 \times i^3 can be rewritten as:

\displaystyle i^4 \times i^3 = i^2\times i^2\times i^2\times i

Since \displaystyle i=\sqrt{-1}, the value of \displaystyle i^2 = -1.

\displaystyle i^2\times i^2\times i^2\times i = (-1) (-1) (-1)(i) = -i

The correct answer is:  \displaystyle -i

Example Question #4 : Polar Coordinates And Complex Numbers

Find the product of the two complex numbers

\displaystyle \small 3+7i  and \displaystyle \small 7+10i

Possible Answers:

\displaystyle \small -49+79i

\displaystyle \small 21+79i+70i^2

\displaystyle \small 21+70i

\displaystyle \small 10+17i

Correct answer:

\displaystyle \small -49+79i

Explanation:

The product is

\displaystyle \small (3+7i)(7+10i)=21+30i+49i+70i^2=21-70+79i=-49+79i

 

Example Question #3 : Products And Quotients Of Complex Numbers In Polar Form

Let \displaystyle a=(1+i)^{n}\displaystyle b=(1-i)^n. Find a simple form of \displaystyle \frac{a}{b}.

Possible Answers:

\displaystyle 2i^{n+1}

\displaystyle i^{n}

\displaystyle 4i^{n+1}

\displaystyle -i^{n}

\displaystyle -i^{n+1}

Correct answer:

\displaystyle i^{n}

Explanation:

We remark first that:

 

\displaystyle \frac{1+i}{1-i}=\frac{1+i}{1-i} \frac{1+i}{1+i}\displaystyle =\frac{(1+i)^2}{2}

 

and we know that :

\displaystyle (1+i)^2=1+2i-i^2=2i.

 

This means that:

 

\displaystyle \frac{1+i}{1-i}=\frac{2i}{2}=i

 

\displaystyle \left(\frac{1+i}{1-i}\right)^n=i^{n}

 

Example Question #1 : Find The Quotient Of Complex Numbers

What is \displaystyle \frac{(i^2)}{1-i}?

Possible Answers:

\displaystyle -i

\displaystyle -2i

\displaystyle 1+\frac{i}{i^2}

\displaystyle -1+\frac{1}{1-i}

\displaystyle i^2

Correct answer:

\displaystyle -1+\frac{1}{1-i}

Explanation:

Since \displaystyle i^=-1,

the problem becomes,

\displaystyle \frac{-1}{1-i}

\displaystyle =-1+\frac{1}{1-i}

Learning Tools by Varsity Tutors