Pre-Algebra : Two-Step Equations with Integers

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 18x - 12 = 24

Possible Answers:

\displaystyle 2

\displaystyle 4

\displaystyle -2

\displaystyle 3

Correct answer:

\displaystyle 2

Explanation:

Add 12 to both sides of the equation:

\displaystyle 18x - 12 = 24

         \displaystyle +12=+12

The equation should now look like this:

\displaystyle 18x=36

Divide each side by 18:

\displaystyle \frac{18x}{18}=\frac{36}{18}=2

Your result should be:

\displaystyle x=2

Example Question #22 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 2x + 3 = 75

Possible Answers:

\displaystyle 32

\displaystyle 38

\displaystyle 30

\displaystyle 36

Correct answer:

\displaystyle 36

Explanation:

Subtract 3 from both sides:

\displaystyle 2x + 3 = 75

       \displaystyle -3=-3

The equation should now look like this:

\displaystyle 2x=72

Divide by 2:

\displaystyle \frac{2x}{2}=\frac{72}{2}=36

Your result should be:

\displaystyle x=36

Example Question #23 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 6x + 2 = 32

Possible Answers:

\displaystyle 6

\displaystyle 5

\displaystyle 4

\displaystyle -6

Correct answer:

\displaystyle 5

Explanation:

Subtract 2 from each side:

\displaystyle 6x + 2 = 32

       \displaystyle -2=-2

The equation should now look like this:

\displaystyle 6x=30

Divide by 6:

\displaystyle \frac{6x}{6}=\frac{30}{6}=5

\displaystyle x=5

Example Question #24 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 16x + 24 = 88

Possible Answers:

\displaystyle 22

\displaystyle 16

\displaystyle 11

\displaystyle 4

Correct answer:

\displaystyle 4

Explanation:

Subtract 24 from both sides of the equation:

\displaystyle 16x + 24 = 88

          \displaystyle -24=-24

The equation should now look like this:

\displaystyle 16x = 64

Then, isolate the variable by dividing by \displaystyle 16:

\displaystyle \frac{16x}{16}=\frac{64}{16}=4

Your result should be:

\displaystyle x=4

Example Question #25 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 2x - 6 = -12

Possible Answers:

\displaystyle 6

\displaystyle -4

\displaystyle 4

\displaystyle -3

Correct answer:

\displaystyle -3

Explanation:

Add 6 to both sides:

\displaystyle 2x - 6 = -12

       \displaystyle +6=+6

The equation should now look like this:

\displaystyle 2x=-6

Divide by 2:

\displaystyle \frac{2x}{2}=\frac{-6}{2}=-3

Your result should be:

\displaystyle x=-3

Example Question #26 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 62x + 12 = 50x

Possible Answers:

\displaystyle -1

\displaystyle 4

\displaystyle -3

\displaystyle 6

Correct answer:

\displaystyle -1

Explanation:

Subtract \displaystyle 62x from both sides of the equation:

\displaystyle 62x + 12 = 50x

\displaystyle -62x       \displaystyle = \displaystyle -62x

The equation should now look like this:

\displaystyle 12 = -12x

Then, isolate the variable by moving the \displaystyle -12 to the other side of the equation as well. Do this by dividing:

\displaystyle \frac{12}{-12}=\frac{-12x}{-12}

Your result should be:

\displaystyle x=-1

Example Question #27 : Two Step Equations

Solve for \displaystyle x:

\displaystyle 6x = 4x + 44

Possible Answers:

\displaystyle 4

\displaystyle 22

\displaystyle 11

\displaystyle 10

Correct answer:

\displaystyle 22

Explanation:

Subtract \displaystyle 4x from both sides of the equation:

   \displaystyle 6x = 4x + 44

The equation should now look like this:

\displaystyle 2x=44

Then, divide both sides by 2:

\displaystyle \frac{2x}{2}=\frac{44}{2}=22

Your result should be:

\displaystyle x=22

Example Question #21 : Two Step Equations

Solve for \displaystyle n:

\displaystyle 4n+2=-6

Possible Answers:

\displaystyle n=-2

\displaystyle n=1

\displaystyle n=-1

\displaystyle n=2

Correct answer:

\displaystyle n=-2

Explanation:

\displaystyle 4n+2=-6

Subtract 2 from both sides:

\displaystyle 4n+2-2=-6-2

\displaystyle 4n=-8

Divide by 4:

\displaystyle \frac{4n}{4}=\frac{-8}{4}

\displaystyle n=-2

Example Question #28 : Two Step Equations With Integers

Solve for \displaystyle x.

\displaystyle 3x-2=19

Possible Answers:

\displaystyle 7

\displaystyle 3

\displaystyle 55

\displaystyle 59

Correct answer:

\displaystyle 7

Explanation:

In order to isolate \displaystyle x, we first have to add 2 to both sides:

\displaystyle 3x=19+2

\displaystyle 3x=21

We then divide by 3: 

\displaystyle x=\frac{21}{3}=7

Example Question #82 : Algebraic Equations

Solve for \displaystyle x:

\displaystyle \small 2x-5=3

Possible Answers:

\displaystyle \small -1

\displaystyle \small -2

\displaystyle \small 16

\displaystyle \small 4

\displaystyle \small 8

Correct answer:

\displaystyle \small 4

Explanation:

To isolate \displaystyle x, we must move all other numbers to the other side of the equation. Recall that the order of operations is parentheses, exponents, multiplication, division, addition, and subtraction (PEMDAS) and when solving equations, we must follow these in the reverse order. Therefore, here, we begin by moving the 5 to the right hand side.

\displaystyle \small 2x-5+5=3+5

\displaystyle \small 2x=8

Next, we must divide by 2 to solve for \displaystyle x.

\displaystyle \small \frac{2x}{2}=\frac{8}{2}

\displaystyle \small x=4

Therefore, our answer is \displaystyle \small x=4.

Learning Tools by Varsity Tutors