Physical Chemistry : Orbitals and Hybridization

Study concepts, example questions & explanations for Physical Chemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Orbitals And Hybridization

What is the hybridization on the nitrogen atom in a molecule of ammonia?

Possible Answers:

sp

sp3

sp3d

sp2

Correct answer:

sp3

Explanation:

The hybridization of an atom can be determined by the number of atoms it is bonded to, as well as the number of lone pairs it has. Two of these variables would be sp, three variables would be sp2, and four would be sp3.

The nitrogen in ammonia is bonded to three atoms of hydrogen, but also has a lone pair in order to satisfy its octet. This means that nitrogen exhibits sphybridization.

Example Question #41 : Nuclear, Quantum, And Molecular Chemistry

Which of the following are true regarding  and  orbitals?

I. Both  and  orbitals can contain a maximum of two electrons

II. In a given shell,  orbitals are more numerous because they are spherical in shape

III.  orbitals have lower energy than  orbitals within the same shell

Possible Answers:

I and III

I only

III only

I and II

Correct answer:

I and III

Explanation:

Orbitals are regions in an electron shell where electrons might be located. There are several types of orbitals such as , and . Most elements found on the periodic table contain electrons within one of these orbitals. A characteristic of an orbital is that it can only contain two electrons maximum. A shell might contain multiple orbitals; however, each orbital can only contain two electrons. Each orbital has a unique shape that corresponds to the electron density (the possible location of an electron at a given point in time). The  orbital has a spherical shape whereas the  orbital has a dumbbell shape. As mentioned, a shell can contain multiple types of orbitals. A shell can typically contain one  orbital, three  orbitals, five  orbitals, and seven  orbitals. Remember that the shape of the orbital has no bearing on the amount of orbitals in a shell. An orbital is higher in energy if it is found farther away from the nucleus. The orbitals in order of increasing energy is as follows . Therefore, an  orbital has lower energy than a  orbital in the same shell. 

Example Question #42 : Nuclear, Quantum, And Molecular Chemistry

What is true when comparing the electron configuration of elemental sodium  and sodium cation ?

Possible Answers:

The sodium ion has more electrons in  orbitals

The outermost shell of the sodium ion has one electron

Elemental sodium is paramagnetic

The sodium ion has one additional electron in an  orbital

Correct answer:

Elemental sodium is paramagnetic

Explanation:

To answer this question, we need to find the electron configuration of both elemental sodium and sodium cation. If we look at the periodic table we can see that sodium is found on the first column. Since it is found in the first column, sodium has one valence electron. To complete octet, sodium will readily lose an electron and become a positively charged sodium ion. The electron configuration for sodium is . The electron configuration for sodium ion is  (because it lost its electron in the  orbital). This means that elemental sodium has an unpaired electron in its  orbital; the sodium ion has no unpaired electrons. Recall that an unpaired electron can generate its own magnetic field and is called paramagnetic; therefore, solid sodium is paramagnetic. The number of electrons in the  orbitals for both sodium and sodium ion is the same (6 electrons total in the  orbital). The outermost shell of sodium is the third shell (because sodium is located on the third row of periodic table). Elemental sodium contains one electron in the  orbital in the outermost shell whereas the sodium ion contains 6 electrons in its outermost shell.

Example Question #42 : Nuclear, Quantum, And Molecular Chemistry

It is observed that a molecule has three hybridized orbitals in its outermost shell. What can you conclude about this molecule?

Possible Answers:

It has a lone pair electron

It has four single bonds

None of these

It has a double bond

Correct answer:

It has a double bond

Explanation:

Hybridization is a process involving the fusion, or hybridization, of  and  orbitals to form a unique orbital. It is possible for various combinations of  and  hybridization. Recall that there is one  orbital and three  orbitals in each shell. This means that the one  orbital can hybridize with 1, 2, or all 3  orbitals. Since there are three total combinations, there are three types of hybridized orbitals. These are , , and  orbital has one  and one  orbital hybridized. This means that the  orbital and the first  orbital become a new  orbital. A molecule with  hybridization will have two  orbitals and two  orbitals. Similarly, an  orbital is made from the hybridization of one  and two  orbitals. In  hybridization, there are three  orbitals and one  orbital. Finally, an  orbital has one  and all three  orbitals; therefore, an  hybridized molecule will have four  orbitals and no  orbitals. The question states that there are three hybridized orbitals in this molecule; therefore, this molecule must be  hybridized. The single  orbital is unhybridized because the molecule probably has a double bond. Electrons in  bonds in double and triple bonds cannot be found in hybridized orbitals; therefore, they need their own  orbital. If a molecule has one  bond (double bond), then it will need one  orbital and will be  hybridized (because this will give three  hybridized orbitals and one  orbital). If it has two  bonds (triple bond), then it will need two  orbitals and will be  hybridized. If a molecule has all  bonds (single bonds), then the molecule will require no empty  orbitals for the delocalized electrons, and will be  hybridized.

Example Question #43 : Nuclear, Quantum, And Molecular Chemistry

Which of the following is true regarding carbon tetrachloride?

Possible Answers:

More than one of these are true

The carbon in this molecule has similar hybridization as the carbon in carbon dioxide

Hybridization in this molecule involves three times as many  orbitals as  orbitals

Hybridization in this molecule involves two times as many  orbitals as  orbitals

Correct answer:

Hybridization in this molecule involves three times as many  orbitals as  orbitals

Explanation:

Carbon tetrachloride, , has a central carbon atom attached to four chlorine atoms. The bonds between the carbon atom and chlorine atoms are single covalent bonds. The electrons in a single bond ( bond) can be found in hybridized orbitals. Since carbon tetrachloride only has single bonds, the carbon atom can hybridize all of its orbitals (one  and three ) in the outermost shell and form a  hybridization; therefore, three  orbitals and one  orbital participate in hybridization leading us to the correct answer. Carbon dioxide, , has a central carbon atom bonded to two oxygen atoms. To complete octet, carbon and oxygen atoms have double bonds. This means that carbon dioxide has two  bonds (two double bonds). Recall that electrons in  bonds cannot reside in hybridized orbitals; therefore, to accommodate the two  bonds we need two empty, unhybridized  orbitals. This means that carbon dioxide will have hybridization of one  and one  orbital, giving it an  hybridization.

Learning Tools by Varsity Tutors