New SAT Math - Calculator : New SAT

Study concepts, example questions & explanations for New SAT Math - Calculator

varsity tutors app store varsity tutors android store

Example Questions

Example Question #481 : New Sat

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many additional feet of the material will he need to purchase to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

The carpenter needs  of material. Since he already has  he will need to purchase  more to finish the project.

Example Question #482 : New Sat

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #122 : Ratio And Proportion

A carpenter is making a model house and he buys  of crown molding to use as accent pieces. He needs  of the molding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

The carpenter needs  of material.

Example Question #82 : How To Find A Ratio

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #83 : How To Find A Ratio

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

The carpenter needs  of material.

Example Question #91 : How To Find A Ratio

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #92 : How To Find A Ratio

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #93 : How To Find A Ratio

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

The carpenter needs  of material.

Example Question #483 : New Sat

Mark is three times as old as his son Brian. In ten years, Mark will be  years old. In how many years will Mark be twice as old as Brian? 

Possible Answers:

Correct answer:

Explanation:

In ten years, Mark will be  years old, so Mark is  years old now, and Brian is one-third of this, or  years old. 

Let  be the number of years in which Mark will be twice Brian's age. Then Brian will be , and Mark will be . Since Mark will be twice Brian's age, we can set up and solve the equation:

Mark will be twice Brian's age in  years.

Example Question #2 : Word Problems

Gary is twice as old as his niece Candy. How old will Candy will be in five years when Gary is  years old?

Possible Answers:

Not enough information is given to determine the answer.

Correct answer:

Explanation:

Since Gary will be 37 in five years, he is  years old now. He is twice as old as Cathy, so she is  years old, and in five years, she will be  years old.

Learning Tools by Varsity Tutors