Math Modeling : Probability Models

Study concepts, example questions & explanations for Math Modeling

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Probability Models

A beauty supply company manufactures a variety of brushes. Quality control engineers work to ensure that the defected brushes in the factory will be detected prior to shipping them. It is estimated that approximately 0.2% of the brushes made will be defected. Tests can be done individually on the brushes or on batches of the brushes. If the test on a batch of brushes fails, it means that one or more of the brushes in that particular batch are defected. The estimated cost is 4 cents for a single brush, and  cents for a group of  brushes. If a batch fails then all brushes in that batch must be tested individually. Find the most cost-effected quality control procedure for detecting defected brushes.

Possible Answers:

By testing brush batches in groups of 12 will reduce testing costs without sacrificing the quality. 

By testing brush batches in groups of 10 will reduce testing costs without sacrificing the quality. 

By testing brush batches in groups of 20 will reduce testing costs without sacrificing the quality. 

By testing brush batches in groups of 9 will reduce testing costs without sacrificing the quality. 

By testing brush batches in groups of 15 will reduce testing costs without sacrificing the quality. 

Correct answer:

By testing brush batches in groups of 15 will reduce testing costs without sacrificing the quality. 

Explanation:

First identify the known variables and assumptions.

If 

If a batch of brushes is tested and if the test shows that all the brushes are good then,

If the batch test shows that there is a defected brush in the batch then,

Use a discrete probability model to find the most cost-effected quality control procedure for detecting defected brushes.

Consider the random variable

that has a probability of

If the probability of a brush being good is  then the probability of a brush being defected is . Then the average expected value of  is as follows:

Now there are  brushes and the probability that one brush is defected is  thus assuming independence, the probability of all  brushes in one test group are good is .

Therefore the expected value of the random variable  is,

Therefore the average testing cost is,

Using the law of large numbers minimizing  results in

Now answer the question.

By testing brush batches in groups of 15 will reduce testing costs without sacrificing the quality. 

Example Question #1 : Probability Models

An oil spill occurs at a factory 12 kilometers up stream from a town. One hour after the spill happens it reaches the stream and a 1600 meters long patch of oil begins to flow towards the town at a rate of 2 kilometers per hour. The maximum concentration of the oil in the water is 15 times the acceptable level. What is the maximum concentration expected in town and when will it arrive?

Possible Answers:

Correct answer:

Explanation:

Identify what is known and the assumptions.

This is a diffusion problem and thus a diffusion equation will be used with a term of relative concentration. 

The relative concentration is denoted as 

This function has been normalized resulting in the following.

The law of conservation of mass will also be useful is solving this problem.

The goal is to calculate the maximum pollution level in town.

The diffusion equation is,

Using the Fourier transforms to solve the diffusion equation is as follows.

For this particular function

so the interval will be

Calculate  given 

Now find where the maximum occurs in time.

Example Question #3 : Probability Models

A computer company has one service repair man and has space for 29 computers in the shop at one time. Last year the shop repaired 67 computers with an average repair time of 2 days per computer. Formulate a Markov process model for  which represents the number of computers in the shop for repair at time  months and calculate the .

Possible Answers:

Correct answer:

Explanation:

Using Markov Process for this question assume that the space is finite.

The stochastic process which determines the future of the process from a probabilistic standpoint is defined as follows.

Let 

Recall that the exponential distribution, and thus the  could have the density function,

Now formulate the Markov Process specifically for this problem.

The transitions of computers in and out of the shop are,

 to  or 

Now calculate the rates up and down.

To calculate  take the total number of computers fixed last year and divide it by the total months in the year. To calculate  assume there are 22 working days in a month and it takes on average, two days to fix a computer.

Its key to know that at zero we cannot move down a state and like wise when at 29, we cannot move up a state.

Solving with 

Continuing in this fashion results in the following.

Now, writing the sum of a finite geometric series is

Now 

therefore,

Next, 

Example Question #4 : Probability Models

A computer company has one service repair man and has space for 32 computers in the shop at one time. Last year the shop repaired 71 computers with an average repair time of 3 days per computer. Formulate a Markov process model for  which represents the number of computers in the shop for repair at time  months and calculate the .

Possible Answers:

Correct answer:

Explanation:

Using Markov Process for this question assume that the space is finite.

The stochastic process which determines the future of the process from a probabilistic standpoint is defined as follows.

Let 

Recall that the exponential distribution, and thus the  could have the density function,

Now formulate the Markov Process specifically for this problem.

The transitions of computers in and out of the shop are,

 to  or 

Now calculate the rates up and down.

To calculate  take the total number of computers fixed last year and divide it by the total months in the year. To calculate  assume there are 22 working days in a month and it takes on average, two days to fix a computer.

Its key to know that at zero we cannot move down a state and like wise when at 29, we cannot move up a state.

Solving with 

Continuing in this fashion results in the following.

Now, writing the sum of a finite geometric series is

Now 

therefore,

Next, 

Example Question #5 : Probability Models

A computer company has one service repair man and has space for 23 computers in the shop at one time. Last year the shop repaired 51 computers with an average repair time of 5 days per computer. Formulate a Markov process model for  which represents the number of computers in the shop for repair at time  months and calculate the .

Possible Answers:

Correct answer:

Explanation:

Using Markov Process for this question assume that the space is finite.

The stochastic process which determines the future of the process from a probabilistic standpoint is defined as follows.

Let 

Recall that the exponential distribution, and thus the  could have the density function,

Now formulate the Markov Process specifically for this problem.

The transitions of computers in and out of the shop are,

 to  or 

Now calculate the rates up and down.

To calculate  take the total number of computers fixed last year and divide it by the total months in the year. To calculate  assume there are 22 working days in a month and it takes on average, two days to fix a computer.

Its key to know that at zero we cannot move down a state and like wise when at 29, we cannot move up a state.

Solving with 

Continuing in this fashion results in the following.

Now, writing the sum of a finite geometric series is

Now 

therefore,

Next, 

Learning Tools by Varsity Tutors