ISEE Upper Level Quantitative : Variables

Study concepts, example questions & explanations for ISEE Upper Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Operations

Which is the greater quantity?

(a) \displaystyle \left | - 7 \right | \cdot \left | x\right | + \left | -4 \right |

(b) \displaystyle (-7) \cdot x+ (-4)

Possible Answers:

(a) is the greater quantity

(a) and (b) are equal

It cannot be determined which of (a) and (b) is greater

(b) is the greater quantity

Correct answer:

(a) is the greater quantity

Explanation:

Suppose \displaystyle x is nonnegative.

Then \displaystyle |x| = x

Consequently,

\displaystyle \left | - 7 \right | \cdot \left | x\right | + \left | -4 \right | = 7 x +4,

which must be positive,

and 

\displaystyle (-7) \cdot x+ (-4) = -7x-4,

which is the opposite of \displaystyle 7 x +4 and consequently must be negative. Therefore, (a) is greater.

 

Suppose \displaystyle x is negative. 

Then \displaystyle |x| = -x.

Consequently,

\displaystyle \left | - 7 \right | \cdot \left | x\right | + \left | -4 \right | = 7( -x) +4 = -7x+4,

and 

\displaystyle (-7) \cdot x+ (-4) = -7x-4.

\displaystyle 4 > -4, so

\displaystyle -7x+4> -7x-4,

and (a) is greater.

 

(a) is the greater quantity either way.

 

Example Question #52 : Variables

Define \displaystyle f (x) = 3x. The graph of \displaystyle g(x) is a line with slope \displaystyle \frac{1}{2}.

\displaystyle (g \circ f) (2) = 6.

Which is the greater quantity?

(a) \displaystyle f(2)

(b) \displaystyle g(2)

Possible Answers:

It is impossible to determine which is greater from the information given

(a) is the greater quantity

(b) is the greater quantity

(a) and (b) are equal

Correct answer:

(a) is the greater quantity

Explanation:

\displaystyle f (x) = 3x, so \displaystyle f (2) = 3 \cdot 2 = 6.

 

\displaystyle (g \circ f) (2) = 6, so, by definition, \displaystyle g[ f (2) ] = 6, or \displaystyle g(6) = 6.

The graph of \displaystyle g(x) is a line through the point with coordinates \displaystyle (6,6) and with slope \displaystyle \frac{1}{2}. The equation of the line can be determined by setting \displaystyle g(x) = x = 6 , m = \frac{1}{2} in the slope-intercept form:

\displaystyle g(x) = mx+ b

\displaystyle 6 = \frac{1}{2} \cdot 6+ b

\displaystyle 6= 3+ b

\displaystyle b = 3.

The equation of the line is \displaystyle g(x) = \frac{1}{2} x+ 3, which makes this the definition of \displaystyle g(x). By setting \displaystyle x= 2,

\displaystyle g(2) = \frac{1}{2} \cdot 2+ 3 = 1 + 3 = 4.

Therefore, \displaystyle f(2)> g(2)

Example Question #51 : Operations

\displaystyle x- y = 125\displaystyle x and \displaystyle y are both positive.

Which is the greater quantity?

(a) \displaystyle | y - x|

(b) \displaystyle | y + x|

Possible Answers:

It is impossible to determine which is greater from the information given

(b) is the greater quantity

(a) is the greater quantity

(a) and (b) are equal

Correct answer:

(b) is the greater quantity

Explanation:

If \displaystyle x- y = 125,

then 

\displaystyle y - x = - (x-y) = -125.

The absolute value of a negative number is its (positive) opposite, so

\displaystyle |y - x |= | -125| = 125

Also, if \displaystyle x and \displaystyle y are both positive, then \displaystyle y + x is positive; the absolute value of a positive number is the number itself, so \displaystyle | y + x| = y+ x. Since \displaystyle x- y = 125, it follows that \displaystyle x = 125 + y. Therefore, 

\displaystyle | y + x| = y+ x = y + (125+y ) = 125 + 2y

Since \displaystyle y is given to be positive,

\displaystyle 125 + 2y > 125

and

\displaystyle | y + x| > |y - x|

Example Question #211 : Algebraic Concepts

Simplify:

\displaystyle 5x^{2} y ^{2}+7 + 6x^{2}y^{2} + 11 xy

Possible Answers:

The expression cannot be simplified further

\displaystyle 11x^{2}y^{2}+ 11 xy +7

\displaystyle 22x^{3}y^{3}+7

\displaystyle 29x^{3}y^{3}

\displaystyle 30x^{2}y^{2}+ 11 xy +7

Correct answer:

\displaystyle 11x^{2}y^{2}+ 11 xy +7

Explanation:

Group and combine like terms \displaystyle 5x^{2} y ^{2},6x^{2}y^{2}:

\displaystyle 5x^{2} y ^{2}+7 + 6x^{2}y^{2} + 11 xy

\displaystyle = 5x^{2} y ^{2}+ 6x^{2}y^{2}+ 11 xy +7

\displaystyle =\left ( 5+ 6 \right )x^{2}y^{2}+ 11 xy +7

\displaystyle =11x^{2}y^{2}+ 11 xy +7

Example Question #51 : Variables

\displaystyle x > 0, y < 0

Which is the greater quantity?

(a) \displaystyle (x + y)^{2}

(b) \displaystyle x^{2}+ y^{2}

Possible Answers:

It is impossible to tell from the information given.

(b) is greater.

(a) is greater.

(a) and (b) are equal.

Correct answer:

(b) is greater.

Explanation:

\displaystyle (x + y)^{2} = x^{2}+2xy + y^{2}

Since \displaystyle x and \displaystyle y have different signs,

\displaystyle xy< 0, and, subsequently,

\displaystyle 2xy < 0

Therefore, 

\displaystyle (x + y)^{2} = x^{2}+2xy + y^{2} < x^{2} + y^{2}

This makes (b) the greater quantity.

Example Question #1 : How To Add Exponential Variables

Assume that \displaystyle x and \displaystyle y are not both zero. Which is the greater quantity?

(a) \displaystyle \frac{(x+y)^{2} + (x - y)^{2}}{x^{2}+y^{2}}

(b) \displaystyle 4xy

Possible Answers:

(a) and (b) are equal.

It is impossible to tell from the information given.

(a) is greater.

(b) is greater.

Correct answer:

It is impossible to tell from the information given.

Explanation:

Simplify the expression in (a):

\displaystyle \frac{(x+y)^{2} + (x - y)^{2}}{x^{2}+y^{2}}

\displaystyle =\frac{(x^{2}+2xy + y^{2})+ (x^{2}-2xy + y^{2})}{x^{2}+y^{2}}

\displaystyle =\frac{ x^{2}+x^{2} +2xy -2xy+ y^{2}+ y^{2}}{x^{2}+y^{2}}

\displaystyle =\frac{ 2x^{2} +2 y^{2}}{x^{2}+y^{2}} =\frac{ 2(x^{2}+y^{2})}{x^{2}+y^{2}} = 2

Therefore, whether (a) or (b) is greater depends on the values of \displaystyle x and \displaystyle y, neither of which are known. 

Example Question #1 : Variables And Exponents

\displaystyle x > 0

Which is the greater quantity?

(a) \displaystyle x^{2} + 3x

(b) \displaystyle 4x

Possible Answers:

It is impossible to tell from the information given

(b) is greater

(a) and (b) are equal

(a) is greater

Correct answer:

It is impossible to tell from the information given

Explanation:

We give at least one positive value of \displaystyle x for which (a) is greater and at least one positive value of \displaystyle x for which (b) is greater.

Case 1: \displaystyle x = 2

(a) \displaystyle x^{2} + 3x = 2^{2} + 3 \cdot 2 = 4 + 6 = 10

(b) \displaystyle 4x = 4 \cdot 2 = 8

Case 2: \displaystyle x = \frac{1}{2}

(a) \displaystyle x^{2} + 3x = \left ( \frac{1}{2} \right ) ^{2} + 3 \cdot \frac{1}{2} = \frac{1}{4} + \frac{3}{2} = \frac{7}{4}= 1 \frac{3}{4}

(b) \displaystyle 4x = 4 \cdot \frac{1}{2} = 2

Therefore, either (a) or (b) can be greater.

Example Question #1 : Variables And Exponents

Assume all variables to be nonzero. 

Simplify: \displaystyle \left (12x^{5}y ^{4}z^{3} \right )^{0} + \left (3x^{5}y ^{4}z^{3} \right )^{0}

Possible Answers:

\displaystyle 15x^{10}y ^{8}z^{6}

None of the answer choices are correct.

\displaystyle 36x^{10}y ^{8}z^{6}

\displaystyle 36x^{5}y ^{4}z^{3}

\displaystyle 15x^{5}y ^{4}z^{3}

Correct answer:

None of the answer choices are correct.

Explanation:

Any nonzero expression raised to the power of 0 is equal to 1. Therefore, 

\displaystyle \left (12x^{5}y ^{4}z^{3} \right )^{0} + \left (3x^{5}y ^{4}z^{3} \right )^{0} = 1 + 1 = 2.

None of the given expressions are correct.

Example Question #1 : How To Find The Exponent Of Variables

Simplify:

\displaystyle \left (\frac{x^{3}}{2y^{4}} \right ) ^{-3}

Possible Answers:

\displaystyle \frac{8x^{6} }{ y^{7}}

\displaystyle \frac{8x^{9} }{ y^{12}}

\displaystyle \frac{1}{2y}

\displaystyle \frac{8 y^{7} }{x^{6} }

\displaystyle \frac{8 y^{12} }{x^{9} }

Correct answer:

\displaystyle \frac{8 y^{12} }{x^{9} }

Explanation:

\displaystyle \left (\frac{x^{3}}{2y^{4}} \right ) ^{-3} = \left (\frac{2y^{4}}{x^{3}} \right ) ^{3} = \frac{2^{3} \left (y^{4}\right ) ^{3} }{\left (x^{3} \right )^{3}}= \frac{8 y^{4 \cdot 3} }{x^{3\cdot 3} }= \frac{8 y^{12} }{x^{9} }

Example Question #2 : How To Find The Exponent Of Variables

\displaystyle y>1

Which is greater?

(a) \displaystyle y ^{-2}

(b) \displaystyle y^{2}

Possible Answers:

(a) is greater

(b) is greater

It is impossible to tell from the information given

(a) and (b) are equal

Correct answer:

(b) is greater

Explanation:

If \displaystyle y > 1, then \displaystyle y ^{2}> 1^{2} = 1 and \displaystyle y ^{-2}= \frac{1}{y ^{2}} < \frac{1}{1} = 1

 

\displaystyle y ^{2}> 1> y ^{-2}, so by transitivity, \displaystyle y ^{2}> y ^{-2}, and (b) is greater

Learning Tools by Varsity Tutors