ISEE Upper Level Math : Exponents

Study concepts, example questions & explanations for ISEE Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #6 : How To Multiply Exponents

If \displaystyle x=2, find the value of:

 

\displaystyle \frac{3x^{\sqrt{2}}(x^{\sqrt{3}})^\sqrt{3}}{x^{\sqrt{2}}}

Possible Answers:

\displaystyle 24

\displaystyle 8

\displaystyle 20

\displaystyle 36

\displaystyle 16

Correct answer:

\displaystyle 24

Explanation:

Based on the power rule for exponents we can write:

 

\displaystyle (a^m)^{n}=a^{m\times n}

 

That means; to raise a power to a power we need to multiply the exponents. So we can write:

 

\displaystyle \frac{3x^{\sqrt{2}}(x^{\sqrt{3}})^\sqrt{3}}{x^{\sqrt{2}}}=3\times \left(\frac{x^{\sqrt{2}}}{x^{\sqrt{2}}}\right) \times (x^{\sqrt{3}})^{\sqrt{3}}=3x^{\sqrt{3}\times \sqrt{3}}=3x^3

 

Substitute \displaystyle x=2 and we get:

 

\displaystyle 3x^3=3\times 2^3=3\times 8=24

Example Question #511 : Isee Upper Level (Grades 9 12) Mathematics Achievement

Simplify:

\displaystyle (x^{2\sqrt{2}})^{3\sqrt{2}}

Possible Answers:

\displaystyle x^{6}

\displaystyle x^{2}

\displaystyle x^{6\sqrt{}2}

\displaystyle x^{12}

\displaystyle x^{8}

Correct answer:

\displaystyle x^{12}

Explanation:

Based on the power rule, we know that in order to raise a power to a power we need to multiply the exponents, i.e.

\displaystyle (x^{m})^{n}=x^{m\times n}.

 

\displaystyle (x^{2\sqrt{2}})^{3\sqrt{2}}=x^{2\sqrt{2}\times 3\sqrt{2}}=x^{2\times 3\times 2}=x^{12}

Example Question #72 : Numbers And Operations

Simplify:

\displaystyle (\frac{12x^{3}}{3x^{-1}})^{4}

Possible Answers:

\displaystyle 16x^{16}

\displaystyle 256x^{16}

\displaystyle 16x^{8}

\displaystyle 256x^{12}

\displaystyle 256x^{8}

Correct answer:

\displaystyle 256x^{16}

Explanation:

The Negative Exponent Rule says \displaystyle a^{-n}=\frac{1}{a^n}.

\displaystyle (\frac{12x^{3}}{3x^{-1}})^{4}=(\frac{12}{3}\times x^{3+1})^{4}=(4x^4)^{4}

The power rule says that, in order to raise a power to a power, we need to multiply the exponents, i.e. \displaystyle (x^{m})^{n}=x^{m\times n}.

\displaystyle (\frac{12x^{3}}{3x^{-1}})^{4}=(4x^4)^{4}=4^4\times x^{4\times 4}=256x^{16}

 

Example Question #71 : Numbers And Operations

What is the value of this equation?

\displaystyle (x^{2})^{3}-(2^{3})^{2}

Possible Answers:

\displaystyle x^{6}-32

\displaystyle x^{5}-64

\displaystyle x^{6}+64

\displaystyle x^{6}-64

Correct answer:

\displaystyle x^{6}-64

Explanation:

When an exponent is raised to another exponent, the exponents should be multiplied toghether. This will result in:

\displaystyle (x^{2})^{3}-(2^{3})^{2}

\displaystyle x^{6}-2^{6}

\displaystyle x^{6}-64

Example Question #72 : Numbers And Operations

Which expression is equal to \displaystyle (x^{2})^{3}?

Possible Answers:

\displaystyle x^{6}

\displaystyle x^{\frac{2}{3}}

\displaystyle x^{5}

\displaystyle x^{\frac{3}{2}}

Correct answer:

\displaystyle x^{6}

Explanation:

When exponent of a value is raised to another exponent, the values of the exponents are multiplied by each other. 

\displaystyle (x^{2})^{3}

2 is multiplied by 3, and so the exponent of x is 6. 

\displaystyle x^{6}

Example Question #73 : Numbers And Operations

What is the value of \displaystyle (2^{6})^{\frac{1}{2}}?

Possible Answers:

\displaystyle 8

\displaystyle 32

\displaystyle 16

\displaystyle 4

Correct answer:

\displaystyle 8

Explanation:

When one exponent is raised to another exponent, the values of the exponents should be multiplied together. Thus, 

\displaystyle (2^{6})^{\frac{1}{2}} can be simplified to \displaystyle 2^{3}, given that \displaystyle 6\cdot \frac{1}{2}=3

\displaystyle 2^{3}=2\cdot2\cdot2=8

Example Question #74 : Numbers And Operations

What is the expression below equal to?

\displaystyle 3x^{4}*5x^{9}

Possible Answers:

\displaystyle 15x^{36}

\displaystyle 8x^{9}

\displaystyle 8x^{36}

\displaystyle 15x^{13}

Correct answer:

\displaystyle 15x^{13}

Explanation:

When exponents are multiplied by each other, the powers should be added together. Meanwhile, numbers not raised to an exponent are simply multiplied by each other. 

Therefore, the answer is \displaystyle 15x^{13}, because \displaystyle 3*5=15, and \displaystyle 9+4=13

Example Question #511 : Isee Upper Level (Grades 9 12) Mathematics Achievement

What is the value of \displaystyle -1^{323}?

Possible Answers:

\displaystyle 1

\displaystyle -1

\displaystyle -323

\displaystyle 323

Correct answer:

\displaystyle -1

Explanation:

1 raised to any exponent will always be 1. 

-1 will be equal to 1 when the exponent is even and will be equal to -1 when the exponent is odd. 

Given that 323 is odd, \displaystyle -1^{323} is equal to -1. 

Example Question #512 : Isee Upper Level (Grades 9 12) Mathematics Achievement

Simplify the following:

\displaystyle 6x^5*5x^6*3x^2

Possible Answers:

\displaystyle 33x^{11}

\displaystyle 45x^{7}

\displaystyle 14x^{90}

\displaystyle 90x^{13}

Correct answer:

\displaystyle 90x^{13}

Explanation:

Simplify the following:

\displaystyle 6x^5*5x^6*3x^2

Let's begin by recalling two rules

1) When multiplying variables with a common base, add the exponents.

2) When multiplying variables with a common base, multiply the coefficients.

\displaystyle 6x^5*5x^6*3x^2=(5*6*3)x^{5+6+2}=90x^{13}

So, our answer is 

\displaystyle 90x^{13}

Example Question #1 : How To Divide Exponents

Simplify: \displaystyle \frac{12x^{12}}{3x^{3}}

Possible Answers:

\displaystyle \frac{x^{9}}{4}

\displaystyle 4x^{9}

\displaystyle 9x^{9}

\displaystyle \frac{4}{x^{9}}

\displaystyle 4x^{4}

Correct answer:

\displaystyle 4x^{9}

Explanation:

Separate the fraction and apply the quotient of powers rule:

\displaystyle \frac{12x^{12}}{3x^{3}} = \frac{12}{3} \cdot \frac{x^{12}}{x^{3}} = 4x^{12-3} = 4x^{9}

Learning Tools by Varsity Tutors