ISEE Middle Level Quantitative : Numbers and Operations

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Adding Fractions In Word Problems

On Friday it snowed \displaystyle \frac{2}{12} of an inch in the afternoon and \displaystyle \frac{2}{12} of an inch in the evening. What was the total amount of snowfall on Friday?

 

Possible Answers:

\displaystyle \frac{4}{12}

\displaystyle \frac{5}{12}

\displaystyle \frac{3}{12}

\displaystyle \frac{6}{12}

\displaystyle \frac{2}{12}

Correct answer:

\displaystyle \frac{4}{12}

Explanation:

To solve this problem, we are putting the amount of snowfall from the afternoon and the evening together, so we add the fractions. 

\displaystyle \frac{2}{12}+\frac{2}{12}=\frac{4}{12}

4 12

Example Question #554 : Number & Operations: €”Fractions

On Thursday it snowed \displaystyle \frac{2}{12} of an inch in the afternoon and \displaystyle \frac{1}{12} of an inch in the evening. What was the total amount of snowfall on Thursday?

 

Possible Answers:

\displaystyle \frac{7}{12}

\displaystyle \frac{4}{12}

\displaystyle \frac{5}{12}

\displaystyle \frac{6}{12}

\displaystyle \frac{3}{12}

Correct answer:

\displaystyle \frac{3}{12}

Explanation:

To solve this problem, we are putting the amount of snowfall from the afternoon and the evening together, so we add the fractions. 

\displaystyle \frac{2}{12}+\frac{1}{12}=\frac{3}{12}

3 12

Example Question #375 : Fractions

On Wednesday it snowed \displaystyle \frac{1}{12} of an inch in the afternoon and \displaystyle \frac{1}{12} of an inch in the evening. What was the total amount of snowfall on Wednesday?

 

Possible Answers:

\displaystyle \frac{3}{12}

\displaystyle \frac{2}{12}

\displaystyle \frac{4}{12}

\displaystyle \frac{1}{12}

\displaystyle \frac{5}{12}

Correct answer:

\displaystyle \frac{2}{12}

Explanation:

To solve this problem, we are putting the amount of snowfall from the afternoon and the evening together, so we add the fractions. 

\displaystyle \frac{1}{12}+\frac{1}{12}=\frac{2}{12}

2 12

Example Question #32 : Adding Fractions In Word Problems

On Tuesday it snowed \displaystyle \frac{2}{4} of an inch in the afternoon and \displaystyle \frac{1}{4} of an inch in the evening. What was the total amount of snowfall on Tuesday?

 

Possible Answers:

\displaystyle \frac{4}{4}

\displaystyle \frac{2}{4}

\displaystyle \frac{1}{4}

\displaystyle \frac{3}{4}

\displaystyle \frac{5}{4}

Correct answer:

\displaystyle \frac{3}{4}

Explanation:

To solve this problem, we are putting the amount of snowfall from the afternoon and the evening together, so we add the fractions. 

\displaystyle \frac{2}{4}+\frac{1}{4}=\frac{3}{4}

3 4

Example Question #221 : How To Add Fractions

On Monday it snowed \displaystyle \frac{1}{4} of an inch in the afternoon and \displaystyle \frac{1}{4} of an inch in the evening. What was the total amount of snowfall on Monday?

Possible Answers:

\displaystyle \frac{3}{4}

\displaystyle \frac{5}{5}

\displaystyle \frac{2}{4}

\displaystyle \frac{1}{4}

\displaystyle \frac{4}{4}

Correct answer:

\displaystyle \frac{2}{4}

Explanation:

To solve this problem, we are putting the amount of snowfall from the afternoon and the evening together, so we add the fractions. 

\displaystyle \frac{1}{4}+\frac{1}{4}=\frac{2}{4}

 2 4

Example Question #381 : Fractions

On Saturday it snowed \displaystyle \frac{1}{3} of an inch in the afternoon and \displaystyle \frac{1}{3} of an inch in the evening. What was the total amount of snowfall on Saturday?

 

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle \frac{5}{3}

\displaystyle \frac{3}{3}

\displaystyle \frac{1}{3}

\displaystyle \frac{4}{3}

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

To solve this problem, we are putting the amount of snowfall from the afternoon and the evening together, so we add the fractions. 

\displaystyle \frac{1}{3}+\frac{1}{3}=\frac{2}{3}

2 3

Example Question #2031 : Common Core Math: Grade 5

\displaystyle \frac{1}{4}+\frac{1}{2}

Possible Answers:

\displaystyle \frac{2}{6}

\displaystyle \frac{2}{4}

\displaystyle \frac{1}{3}

\displaystyle \frac{1}{2}

\displaystyle \frac{3}{4}

Correct answer:

\displaystyle \frac{3}{4}

Explanation:

\displaystyle \frac{1}{4}+\frac{1}{2}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{1}{2}\times\frac{2}{2}=\frac{2}{4}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{1}{4}+\frac{2}{4}=\frac{3}{4}

Example Question #2032 : Common Core Math: Grade 5

\displaystyle \frac{1}{5}+\frac{1}{2}

Possible Answers:

\displaystyle \frac{7}{10}

\displaystyle \frac{1}{7}

\displaystyle \frac{8}{10}

\displaystyle \frac{7}{20}

\displaystyle \frac{2}{7}

Correct answer:

\displaystyle \frac{7}{10}

Explanation:

\displaystyle \frac{1}{5}+\frac{1}{2}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{1}{5}\times\frac{2}{2}=\frac{2}{10}

\displaystyle \frac{1}{2}\times \frac{5}{5}=\frac{5}{10}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{2}{10}+\frac{5}{10}=\frac{7}{10}

Example Question #651 : Number & Operations With Fractions

\displaystyle \frac{1}{3}+\frac{2}{5}

Possible Answers:

\displaystyle \frac{3}{8}

\displaystyle \frac{2}{8}

\displaystyle \frac{15}{11}

\displaystyle \frac{11}{15}

\displaystyle \frac{11}{30}

Correct answer:

\displaystyle \frac{11}{15}

Explanation:

\displaystyle \frac{1}{3}+\frac{2}{5}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{1}{3}\times\frac{5}5{}=\frac{5}{15}

\displaystyle \frac{2}{5}\times\frac{3}{3}=\frac{6}{15}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{5}{15}+\frac{6}{15}=\frac{11}{15}

Example Question #652 : Number & Operations With Fractions

\displaystyle \frac{1}{2}+\frac{2}{7}

Possible Answers:

\displaystyle \frac{14}{11}

\displaystyle \frac{11}{14}

\displaystyle \frac{3}{9}

\displaystyle \frac{1}{3}

Correct answer:

\displaystyle \frac{11}{14}

Explanation:

\displaystyle \frac{1}{2}+\frac{2}{7}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{1}{2}\times\frac{7}{7}=\frac{7}{14}

\displaystyle \frac{2}{7}\times\frac{2}{2}=\frac{4}{14}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{7}{14}+\frac{4}{14}=\frac{11}{14}

Learning Tools by Varsity Tutors