ISEE Middle Level Quantitative : Equations

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #142 : Algebraic Concepts

\displaystyle 5x = 35

\displaystyle 3y = 24

Which is the greater quantity?

(A) \displaystyle x

(B) \displaystyle y

Possible Answers:

(B) is greater

It is impossible to determine which is greater from the information given

(A) is greater

(A) and (B) are equal

Correct answer:

(B) is greater

Explanation:

\displaystyle 5x = 35

\displaystyle 5x \div 5 = 35 \div 5

\displaystyle x=7

 

\displaystyle 3y = 24

\displaystyle 3y \div 3 = 24 \div 3

\displaystyle y = 8

 

\displaystyle y > x, so (B) is greater.

Example Question #21 : Equations

\displaystyle \frac{2}{3} a = 20

\displaystyle \frac{3}{5} b = 24

Which is greater?

(A) \displaystyle a

(B) \displaystyle b

Possible Answers:

(A) is greater

It is impossible to determine which is greater from the information given

(A) and (B) are equal

(B) is greater

Correct answer:

(B) is greater

Explanation:

\displaystyle \frac{2}{3} a = 20

\displaystyle \frac{3}{2} \cdot \frac{2}{3} a =\frac{3}{2} \cdot 20

\displaystyle a = \frac{60}{2} = 30

 

\displaystyle \frac{3}{5} b = 24

\displaystyle \frac{5}{3}\cdot \frac{3}{5} b =\frac{5}{3}\cdot 24

\displaystyle b =\frac{120}{3} = 40

 

\displaystyle b > a, so (B) is the greater quantity.

Example Question #142 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

How many elements of the set \displaystyle \left \{ 1, 2, 3, 4, 5 \right \} can be substituted for \displaystyle y to make the inequality \displaystyle y +8.6 < 3.3 a true statement?

Possible Answers:

None

Four

Two 

Three 

One 

Correct answer:

None

Explanation:

\displaystyle y +8.6 < 3.3

\displaystyle y +8.6 - 8.6 < 3.3 - 8.6

\displaystyle y < 3.3 - 8.6

\displaystyle y < -\left ( 8.6-3.3 \right )

\displaystyle y < -5.3

 

None of choices fit this criterion, so the correct answer is none.

Example Question #21 : Equations

How many elements of the set \displaystyle \left \{ -2, -1, 0, 1, 2 \right \} can be substituted for \displaystyle y to make the inequality \displaystyle -9y \geq 18 a true statement?

Possible Answers:

One

None

Four

Two

Five 

Correct answer:

One

Explanation:

\displaystyle -9y \geq 18

\displaystyle -9y \div (-9) \leq 18\div (-9) (Note that the inequality symbol switches here)

\displaystyle y\leq -2

 

Of the elements of \displaystyle \left \{ -2, -1, 0, 1, 2 \right \}, only \displaystyle -2 fits this criterion.

Example Question #23 : Equations

If \displaystyle y = 4, then how many integers can be substituted for \displaystyle x to make the equation \displaystyle 4xy = 0 a true statement?

Possible Answers:

It cannot be determined from the information given

Two

Infinitely many

One 

Zero

Correct answer:

One 

Explanation:

If \displaystyle y = 4, the equation can be rewritten and solved as follows:

\displaystyle 4xy = 0

\displaystyle 4x \cdot 4 = 0

\displaystyle 16x = 0

\displaystyle 16x \div 16 = 0 \div 16

\displaystyle x = 0

This is the only number that makes this statement true, so the correct choice is "one".

Example Question #24 : Equations

If \displaystyle x = -8, then how many integers can be substituted for \displaystyle x to make the equation \displaystyle x^{2} + y^{3} = 0 a true statement?

Possible Answers:

Three

Two

Zero

Six

One

Correct answer:

One

Explanation:

If \displaystyle x = -8, then the equation can be rewritten and solved as follows:

\displaystyle x^{2} + y^{3} = 0

\displaystyle (-8)^{2} + y^{3} = 0

\displaystyle 64 + y^{3} = 0

\displaystyle 64 + y^{3} -64 = 0-64

\displaystyle y^{3} = -64

The only integer that can be cubed to yield the result \displaystyle -64 is \displaystyle -4, so the correct response is "one".

 

Example Question #25 : Equations

If \displaystyle y = 12, then how many integers can be substituted for \displaystyle x to make the equation \displaystyle x^{2} - y^{2} = 0 a true statement?

Possible Answers:

One

Zero

Two

Infinitely many

It cannot be determined from the information given

Correct answer:

Two

Explanation:

If \displaystyle y = 12, the equation can be restated and solved as follows:

\displaystyle x^{2} - y^{2} = 0

\displaystyle x^{2} - 12^{2} = 0

\displaystyle x^{2} -144 = 0

\displaystyle x^{2} -144 + 144 = 0 + 144

\displaystyle x^{2} = 144

Both \displaystyle x = 12 and \displaystyle x = -12 make this true, so both make the original statement true. "Two" is the correct choice.

Example Question #26 : Equations

How many elements of the set \displaystyle \left \{ -2, -1, 0, 1, 2 \right \} can be substituted for \displaystyle y to make the inequality \displaystyle y + 3\frac{1}{2} < 2 \frac{1}{4} a true statement?

Possible Answers:

Four

Five

One

Two

Three

Correct answer:

One

Explanation:

\displaystyle y + 3\frac{1}{2} < 2 \frac{1}{4}

\displaystyle y + 3\frac{1}{2} - 3\frac{1}{2} < 2 \frac{1}{4} - 3\frac{1}{2}

\displaystyle y < 2 \frac{1}{4} - 3\frac{1}{2}

\displaystyle y < -\left ( 3\frac{1}{2} - 2 \frac{1}{4} \right )

\displaystyle y < - 1 \frac{1}{4}

Of the elements of the set \displaystyle \left \{ -2, -1, 0, 1, 2 \right \}, only \displaystyle -2 fits this criterion, making "one" the correct choice.

Example Question #27 : Equations

\displaystyle \frac{c}{-6 } = 25

\displaystyle \frac{d}{-9} = 20

Which is the greater quantity?

(A) \displaystyle c

(B) \displaystyle d

Possible Answers:

(A) and (B) are equal

(B) is greater

(A) is greater

It is impossible to determine which is greater from the information given

Correct answer:

(A) is greater

Explanation:

\displaystyle \frac{c}{-6 } = 25

\displaystyle \frac{c}{-6 }\times (-6) = 25 \times (-6)

\displaystyle c= -150

 

\displaystyle \frac{d}{-9} = 20

\displaystyle \frac{d}{-9}\times (-9) = 20 \times (-9)

\displaystyle d = -180

 

Since \displaystyle 150 < 180\displaystyle -150 > -180.

\displaystyle c > d, so (A) is greater.

Example Question #22 : Equations

If \displaystyle x = 0, then how many integers can be substituted for \displaystyle y to make the equation \displaystyle 9xy = 0 a true statement?

Possible Answers:

Zero

Infinitely many

Four

One

Two

Correct answer:

Infinitely many

Explanation:

If \displaystyle x = 0, this can be rewritten as

\displaystyle 9xy = 0

\displaystyle 9 \cdot 0 \cdot y =0

\displaystyle 0 y =0

However, since zero multiplied by any number yields a product of zero, this is a true statement for all values of \displaystyle y. This makes "infinitely msny" correct.

Learning Tools by Varsity Tutors