ISEE Middle Level Math : Operations

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Operations

Simplify the expression:

\displaystyle 78k*2k

Possible Answers:

\displaystyle 76k^2

\displaystyle 80k^{2}

\displaystyle 156k^{2}

\displaystyle 74k^{2}

\displaystyle 156k

Correct answer:

\displaystyle 156k^{2}

Explanation:

The commutative property lets us reorganize the expression.

\displaystyle 78k*2k=78*k*2*k=78*2*k*k

By separating the whole numbers and the variables, we can easily multiply.

\displaystyle 78*2=156

\displaystyle k*k=k^2

\displaystyle 72*2*k*k=156*k^2=156k^2

\displaystyle 78k*2k=156k^{2}

Answer: \displaystyle 156k^{2}

 

Example Question #22 : Algebraic Concepts

Simplify the expression:

\displaystyle 25m*15m^{2}

Possible Answers:

\displaystyle 375m^{2}

\displaystyle 375m^{3}

\displaystyle 375

None of these

\displaystyle 375m

Correct answer:

\displaystyle 375m^{3}

Explanation:

Multiply the whole numbers and add the variables:

\displaystyle 25m*15m^{2}=375m^{3}

Answer: \displaystyle 375m^{3}

The commutative property lets us reorganize the expression.

\displaystyle 25m*15m^2=25*m*15*m^2=25*15*m*m^2

By separating the whole numbers and the variables, we can easily multiply.

\displaystyle 25*15=375

\displaystyle m*m^2=m^3

\displaystyle 25*15*m*m^2=375*m^3=375m^3

\displaystyle 25m*15m^{2}=375m^{3}

Answer: \displaystyle 375m^{3}

 

Example Question #22 : Operations

Mulitply:

\displaystyle x(-2-x)

Possible Answers:

\displaystyle -2x+2x^{2}

\displaystyle -2x+x^2

\displaystyle -2x-x^2

\displaystyle -2x+2x

\displaystyle -2x-2x

Correct answer:

\displaystyle -2x-x^2

Explanation:

\displaystyle x(-2-x)=(x)(-2)+(x)(-x)=-2x+(-x^2)=-2x-x^2

Example Question #23 : Operations

\displaystyle 7n\cdot 3n=

Possible Answers:

\displaystyle 10n

\displaystyle 4n

\displaystyle 21n^{2}

\displaystyle 7n^{3}

\displaystyle 10n^{2}

Correct answer:

\displaystyle 21n^{2}

Explanation:

Multiply the numbers and multiply the variables:

\displaystyle 7n\cdot 3n=21n^{2}

Answer: \displaystyle 21n^{2}

Example Question #24 : Operations

\displaystyle 25f*20f^{3}=

Possible Answers:

\displaystyle 500f^{4}

\displaystyle 45f^{4}

\displaystyle 500f^{6}

\displaystyle 45f^{3}

\displaystyle 500f^{3}

Correct answer:

\displaystyle 500f^{4}

Explanation:

Multiply the constants and add an exponent to the variable totaling the number of variables in the equation:

\displaystyle 25f*20f^{3}=500f^{4}

Answer: \displaystyle 500f^{4}

Example Question #26 : Algebraic Concepts

Simplify:

\displaystyle (4v^{3})(xy^{2}v)(2x^{3}v)

Possible Answers:

\displaystyle 9x^{2}y^{2}v^{3}

\displaystyle x^{6}y^{2}v^{14}

\displaystyle 6x^{2}y^{2}v^{3}

\displaystyle 8x^{2}y^{2}v^{3}

\displaystyle 8x^{4}y^{2}v^{5}

Correct answer:

\displaystyle 8x^{4}y^{2}v^{5}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

\displaystyle (4 * 2) (v^{3}*v*v)(x*x^{3})(y^{2}) 

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (8)(v^{3+1+1})(x^{1+3})(y^2)

\displaystyle (8) (v^{5})(x^{4})(y^{2})

This is the same as:

\displaystyle 8x^{4}y^{2}v^{5}

Example Question #27 : Algebraic Concepts

Simplify:

\displaystyle e * t * f^{4} * t^{2} * 10 * f

Possible Answers:

\displaystyle ef^{21}t^{3}

\displaystyle 10ef^{4}t^{2}

\displaystyle 10ef^{5}t^{3}

\displaystyle ef^{14}t^{3}

\displaystyle e^{10}f^{5}t^{3}

Correct answer:

\displaystyle 10ef^{5}t^{3}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

 \displaystyle (10)(e)(f^{4} *f)(t * t^{2})

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (10)(e)(f^{4+1})(t^{1+2})

\displaystyle (10)(e)(f^{5})(t^{3})

This is the same as:

\displaystyle 10ef^{5}t^{3}

Example Question #25 : Operations

Simplify:

\displaystyle 4e*f*e*e*f*f*f*e*3*e*e*e*f*f

Possible Answers:

\displaystyle 18ef

\displaystyle 4e^{9}f^{6}

\displaystyle 12e^{7}f^{6}

\displaystyle 7e^{7}f^{6}

\displaystyle 20ef

Correct answer:

\displaystyle 12e^{7}f^{6}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

\displaystyle (4 *3)(e*e*e *e*e*e*e) (f*f*f*f**f*f)

When multiplying variables of the same type, you add their exponents together. (All of these variables have exponents of 1.) This gets you:

\displaystyle (12)(e^{1+1+1+1+1+1+1})(f^{1+1+1+1+1+1})

 \displaystyle (12)(e^{7}) (f^{6})

This is the same as:

\displaystyle 12e^{7}f^{6}

Example Question #26 : Operations

Simplify:

\displaystyle 2(f^{6})(u^{7})(e^{2}f^{2})(eu)

Possible Answers:

\displaystyle 2e^{2}f^{24}u^{7}

\displaystyle 2e^{3}f^{8}u^{6}

\displaystyle 2e^{2}f^{12}u^{7}

\displaystyle 2e^{3}f^{8}u^{8}

\displaystyle e^{3}f^{14}u^{8}

Correct answer:

\displaystyle 2e^{3}f^{8}u^{8}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

\displaystyle (2)(e * e^{2})(f^{6}*f^{2})(u*u^{7})

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (2)(e^{1+2})(f^{6+2})(u^{1+7})

\displaystyle (2)(e^{3})(f^{8})(u^{8}) 

This is the same as:

\displaystyle 2e^{3}f^{8}u^{8}

Example Question #30 : Algebraic Concepts

Simplify:

\displaystyle (4g)(2r^{2})(r^{3})(g^{2})

Possible Answers:

\displaystyle 6g^{3}r^{5}

\displaystyle 8g^{3}r^{5}

\displaystyle 8g^{2}r^{6}

\displaystyle 4g^{5}r^{5}

\displaystyle 8g^{2}r^{5}

Correct answer:

\displaystyle 8g^{3}r^{5}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

 \displaystyle (2*4)(g*g^{2})(r^{2}*r^{3})

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (8)(g^{1+2})(r^{2+3})

 \displaystyle (8)(g^{3})(r^{5})

This is the same as:

\displaystyle 8g^{3}r^{5}

Learning Tools by Varsity Tutors