ISEE Middle Level Math : Operations

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : How To Subtract Variables

Simplify:

\displaystyle 21x + 51xy - 3x - (2x - 15xy)

Possible Answers:

\displaystyle 20x + 66xy

\displaystyle 16x + 36xy

\displaystyle 20x + 36xy

\displaystyle 16x + 66xy

\displaystyle 82xy

Correct answer:

\displaystyle 16x + 66xy

Explanation:

First, start by distributing the subtraction through the terms in parentheses.  Note that you will be subtracting negative numbers:

\displaystyle 21x + 51xy - 3x - 2x - (-15xy)

Subtracting a negative is the same as adding a positive:

\displaystyle 21x + 51xy - 3x - 2x +15xy

Now, group the like terms:

\displaystyle 21x - 3x - 2x+ 51xy +15xy

All you need to do now is combine like terms:

\displaystyle 16x + 66xy

Example Question #7 : How To Subtract Variables

Simplify:

\displaystyle 33x + 25y - 22xy + 2z - (22y + 21x + 4z)

Possible Answers:

\displaystyle 12x + 3y - 22xy + 6z

\displaystyle 12x + 3y - 22xy + 2z

\displaystyle -11xyz

\displaystyle 12x + 3y - 22xy - 2z

\displaystyle 12x + 46y - 22xy +6z

Correct answer:

\displaystyle 12x + 3y - 22xy - 2z

Explanation:

Begin by distributing the subtraction through the parentheses:

\displaystyle 33x + 25y - 22xy + 2z - 22y - 21x - 4z

Next, group the like terms:

\displaystyle 33x - 21x + 25y - 22y - 22xy + 2z - 4z

Now, combine them:

\displaystyle 12x + 3y - 22xy -2z

Example Question #11 : How To Subtract Variables

Simplify:

\displaystyle 31x + 21y + 3x^{2} - 2y - 2x^{2} + 2x^{2}y

Possible Answers:

\displaystyle 53x^{2}y

\displaystyle 32x^{3} + 19y + 2x^{2}y

\displaystyle 31x + 5x^{2} + 19y + 2x^{2}y

\displaystyle 32x^{2} + 19y + 2x^{2}y

\displaystyle 31x + x^{2} + 19y + 2x^{2}y

Correct answer:

\displaystyle 31x + x^{2} + 19y + 2x^{2}y

Explanation:

Begin by putting similar variables together.  Remember that combinations of variables such as \displaystyle x^2y are treated like a separate variable:

\displaystyle 31x + 21y - 2y + 3x^{2} - 2x^{2} + 2x^{2}y

Combine like terms:

\displaystyle 31x + 19y + x^{2} + 2x^{2}y

You can then rearrange the variables to get the answer as written:

\displaystyle 31x + x^{2} + 19y + 2x^{2}y

Example Question #1 : Apply Properties Of Operations To Expand Linear Expressions With Rational Coefficients: Ccss.Math.Content.7.Ee.A.1

Simplify:

\displaystyle 57x - 3(4x - 5y)

Possible Answers:

\displaystyle 45x - 15y

\displaystyle 60xy

\displaystyle 45x + 15y

\displaystyle 30xy

\displaystyle 69x -15y

Correct answer:

\displaystyle 45x + 15y

Explanation:

Begin by distributing the \displaystyle -3:

\displaystyle 57x - 3(4x) - (-3)(5y)

Multiply each factor:

\displaystyle 57x - 12x - (-15y)

Change the double negation to addition:

\displaystyle 57x - 12x +15y

Combine like terms:

\displaystyle 45x + 15y

Example Question #92 : Algebra

Simplify:

\displaystyle 55x - 13xy - 2(5y + 10xy)

Possible Answers:

\displaystyle 12xy

\displaystyle 55x - 43xy

\displaystyle 42xy

\displaystyle 55x - 33xy - 10y

\displaystyle 55x - 3xy - 10y

Correct answer:

\displaystyle 55x - 33xy - 10y

Explanation:

Begin by distributing the \displaystyle -2:

\displaystyle 55x - 13xy + (-2)5y + (-2)10xy

Multiply all factors:

\displaystyle 55x - 13xy + (-10)y + (-20)xy

Group together the only like factor (\displaystyle xy):

\displaystyle 55x - 13xy-20xy -10y

Combine like terms:

\displaystyle 55x - 33xy -10y

Example Question #111 : Variables

Simplify:

\displaystyle 5xy + 21x - 3y - 14xy + 2x^{2}

Possible Answers:

\displaystyle 29xy + 2x^{2}

\displaystyle 31x^{3}y

\displaystyle 21x + 2x^{2} - 3y - 9xy

\displaystyle 21x + 2x^{2} - 3y - 19xy

\displaystyle 21x + 2x^{2} - 3y + 9xy

Correct answer:

\displaystyle 21x + 2x^{2} - 3y - 9xy

Explanation:

Begin by moving all like terms next to each other.  Remember that you must treat every variable type separately:

\displaystyle 5xy - 14xy + 21x - 3y + 2x^{2}


Combine like terms:

\displaystyle -9xy + 21x - 3y + 2x^{2}

You merely need to reorder the variables to get to the form in the answer choice.

Example Question #92 : Algebra

Simplify:

\displaystyle 3x + 14y + 4(xy - 4x)

Possible Answers:

\displaystyle 10y - 9x

\displaystyle 5x^{2}y^{2}

\displaystyle 14y - x + 4xy

\displaystyle 5xy

\displaystyle 14y - 13x + 4xy

Correct answer:

\displaystyle 14y - 13x + 4xy

Explanation:

Begin by distributing the \displaystyle 4 through the group:

\displaystyle 3x + 14y + 4(xy) - (4)(4x)

Next, perform the multiplications:

\displaystyle 3x + 14y + 4xy - 16x

Group the like terms:

\displaystyle 3x - 16x+ 14y + 4xy

Combine like terms:

\displaystyle -13x+ 14y + 4xy

Rearrange the terms to get the answer as it appears in the answer choices.

Example Question #112 : Variables

Simplify:

\displaystyle 43x^{2} + 2xy - 3y - 4(7xy - 22x^{2})

Possible Answers:

\displaystyle 65x^{2} - 26xy - 3y

\displaystyle 131x^{2} - 26xy - 3y

\displaystyle 131x^{2} - 29xy

\displaystyle -45x^{2} - 26xy - 3y

\displaystyle -45x^{2} - 45xy - 3y

Correct answer:

\displaystyle 131x^{2} - 26xy - 3y

Explanation:

Begin by multiplying through by \displaystyle -4:

\displaystyle 43x^{2} + 2xy - 3y + (-4)(7xy) - (-4)(22x^{2})

Perform the multiplications:

\displaystyle 43x^{2} + 2xy - 3y - 28xy - (-88x^{2})

The double negation becomes addition:

\displaystyle 43x^{2} + 2xy - 3y - 28xy + 88x^{2}

Group like terms:

\displaystyle 43x^{2}+ 88x^{2} + 2xy - 28xy - 3y

Combine like terms:

\displaystyle 131x^{2} + 26xy - 3y

Example Question #111 : Variables

Simplify:

\displaystyle 8(x+7) - 3 (x + 10)

Possible Answers:

\displaystyle 5x+ 46

\displaystyle 9x+22

\displaystyle 5x+ 26

\displaystyle 9x + 43

Correct answer:

\displaystyle 5x+ 26

Explanation:

\displaystyle 8(x+7) - 3 (x + 10)

\displaystyle = 8 \cdot x+ 8 \cdot 7 - 3 \cdot x - 3 \cdot 10

\displaystyle = 8 x+ 56 - 3x - 30

\displaystyle = 5x+ 26

Example Question #11 : How To Subtract Variables

Subtract in modulo 11:

\displaystyle 5-9

Possible Answers:

\displaystyle 4

\displaystyle 2

\displaystyle 8

\displaystyle 6

\displaystyle 7

Correct answer:

\displaystyle 7

Explanation:

\displaystyle 5-9 = 5 + (-9)= -(9-5) = -4 in normal arithmetic.

In modulo 11 arithmetic, a negative number has 11 added to it as many times as necessary until a positive sum is reached:

\displaystyle -4 + 11 = 7

Therefore, 

\displaystyle 5-9 \equiv 7 \mod 11

Learning Tools by Varsity Tutors