ISEE Middle Level Math : ISEE Middle Level (grades 7-8) Mathematics Achievement

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #291 : How To Find The Square Root

\displaystyle 4\sqrt{144} + 3\sqrt{64} =

Possible Answers:

\displaystyle x = 62

\displaystyle x = 72

\displaystyle x =64

\displaystyle x = 40

Correct answer:

\displaystyle x = 72

Explanation:

First find the square root of 144; which is 12.  Then multiply:

\displaystyle 4 \times 12 = 48

Then find the square root of 64, which is 8. Then multiply:

\displaystyle 8 \times 3 = 24

Then add those two numbers together:

\displaystyle 24 + 48 = 72

The answer is \displaystyle 72.

Example Question #292 : How To Find The Square Root

Simplify the following:

\displaystyle \sqrt{64}

Possible Answers:

\displaystyle 64

\displaystyle 7

\displaystyle 32

\displaystyle 28

\displaystyle \pm8

Correct answer:

\displaystyle \pm8

Explanation:

To simplify \displaystyle \sqrt{64}, we will look at the definition of square roots.

 

We know the square root of a number is the same as taking that number and squaring it.  

So, what number do we square to get 64?  

 

The answer is 8. 

\displaystyle \sqrt{64} = \pm8

\displaystyle (\pm8)^2 = 64

Example Question #291 : Isee Middle Level (Grades 7 8) Mathematics Achievement

\displaystyle \sqrt{0.49}

Possible Answers:

\displaystyle 0.7

\displaystyle 7

\displaystyle 0.007

\displaystyle 0.00007

Correct answer:

\displaystyle 0.7

Explanation:

\displaystyle \sqrt{0.49} = 0.7

Because \displaystyle 0.7 \times 0.7 - 0.49

Example Question #294 : How To Find The Square Root

Solve:

\displaystyle x^{2} =\frac{64}{144}

Possible Answers:

\displaystyle x = \pm \frac{2}{3}

\displaystyle \pm12

\displaystyle x = \pm \frac{3}{2}

\displaystyle \pm8

Correct answer:

\displaystyle x = \pm \frac{2}{3}

Explanation:

\displaystyle x^{2} =\frac{64}{144}

Take the square root of each side

\displaystyle \sqrt{x^{2}} = \frac{\sqrt{64}}{\sqrt{144}} or - \frac{\sqrt{64}}{\sqrt{144}}

\displaystyle x = \frac{8}{12} or -\frac{8}{12}

Reduce to simplest form

\displaystyle x = \pm \frac{2}{3}

Example Question #292 : How To Find The Square Root

Estimate \displaystyle \sqrt{82}  to the nearest whole number.

Possible Answers:

\displaystyle 8

\displaystyle 10

\displaystyle 9

\displaystyle 11

Correct answer:

\displaystyle 9

Explanation:

The first perfect square less than 82 is 81.

The first perfect square greater than 82 is 100.

\displaystyle \sqrt{81} < \sqrt{82} < \sqrt{100}

\displaystyle 9< \sqrt{82} < 10

\displaystyle \sqrt{82} is between \displaystyle 9 and \displaystyle 10.

Since \displaystyle 82 is closer to \displaystyle 81 than to \displaystyle 100, the best whole number estimate for

\displaystyle \sqrt{82} is \displaystyle 9.

Example Question #293 : How To Find The Square Root

Estimate to the nearest whole number.

\displaystyle \sqrt{14.3}

Possible Answers:

\displaystyle 4

\displaystyle 3

\displaystyle 5

\displaystyle 6

Correct answer:

\displaystyle 4

Explanation:

\displaystyle \sqrt{14.3}

The first perfect square less than \displaystyle 14.3 is \displaystyle 9.

The first perfect square greater than \displaystyle 14.3 is \displaystyle 16.

\displaystyle \sqrt{9}< \sqrt{14.3} < \sqrt{16}

\displaystyle 3< \sqrt{14.3} < 4

Therefore the \displaystyle \sqrt{14.3} lies between \displaystyle 3 and \displaystyle 4.

Because 14.3 is closer to 16, the best whole number estimate for  \displaystyle \sqrt{14.3} is \displaystyle 4.

 

Example Question #292 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve by finding the square root:

\displaystyle \sqrt{49}*7

Possible Answers:

\displaystyle 0

\displaystyle 56

\displaystyle 49

\displaystyle 14

Correct answer:

\displaystyle 49

Explanation:

First, find the square root:

\displaystyle \sqrt{49}=7

Then, solve:

\displaystyle 7*7=49

Answer: \displaystyle 49

Example Question #293 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve by finding the square roots:

\displaystyle \sqrt{64}\div \sqrt{16}

Possible Answers:

\displaystyle 32

\displaystyle 2

\displaystyle 4

\displaystyle 12

Correct answer:

\displaystyle 2

Explanation:

First, the square roots:

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{16}=4

Then solve:

\displaystyle 8\div 4=2

Answer: \displaystyle 2

Example Question #294 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve:

\displaystyle \sqrt{121}*\sqrt{49}=

Possible Answers:

\displaystyle 170

\displaystyle 77

\displaystyle 52

\displaystyle 7

Correct answer:

\displaystyle 77

Explanation:

To solve, first find the square root:

\displaystyle \sqrt{121}=11

\displaystyle \sqrt{49}=7

Then, solve: \displaystyle 11*7=77

Answer: \displaystyle 77

Example Question #295 : Isee Middle Level (Grades 7 8) Mathematics Achievement

Solve: \displaystyle \sqrt{25}*\sqrt{169}=

Possible Answers:

\displaystyle 18

\displaystyle 8

\displaystyle 65

\displaystyle 224

Correct answer:

\displaystyle 65

Explanation:

To solve, first find the square root:

\displaystyle \sqrt{25}=5

\displaystyle \sqrt{169}=13

Then, solve: \displaystyle 5*13=65

Answer: \displaystyle 65

Learning Tools by Varsity Tutors