ISEE Middle Level Math : How to multiply variables

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Operations

Simplify:

\displaystyle (2)(15y^{2})(x^{3})(10)

Possible Answers:

\displaystyle 20x^{4}y^{30}

\displaystyle 27 x^{4}y^{2}

\displaystyle 300x^{3}y^{2}

\displaystyle 27x^{3}y^{2}

\displaystyle 30x^{31}y^{2}

Correct answer:

\displaystyle 300x^{3}y^{2}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

\displaystyle (2 * 15 * 10)(x^{3})(y^{2})

There are no variables to combine. We only need to combine the numerical coefficient. This gets you:

\displaystyle (300)(x^{3})(y^{2}) 

This is the same as:

\displaystyle 300x^{3}y^{2}

Example Question #31 : Variables

Simplify:

\displaystyle x * y * (x^{3}) * (xy)

Possible Answers:

\displaystyle x^{3}y

\displaystyle 10xy

\displaystyle x^{5}y^{2}

\displaystyle 6x^{3}y

\displaystyle 3x^{5}y^{2}

Correct answer:

\displaystyle x^{5}y^{2}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

\displaystyle (x * x* x^{3})(y * y)

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (x^{1+1+3})(y^{1+1})

 \displaystyle (x^{5})(y^{2})

This is the same as:

\displaystyle x^{5}y^{2}

Example Question #1267 : Hspt Mathematics

Simplify:

\displaystyle x * a^{3} * y^{4} * x^{2} * x*a^{2}

Possible Answers:

\displaystyle a^{6}xy^{2}

\displaystyle a^{6}x^{2}y^{4}

\displaystyle 80axy

\displaystyle a^{5}x^{3}y^{4}

\displaystyle a^{5}x^{4} y^{4}

Correct answer:

\displaystyle a^{5}x^{4} y^{4}

Explanation:

Begin by moving all of the related variables (and constants) next to each other. You can group these in parentheses to make it clear. This is allowed because of the associative rule for multiplication.

\displaystyle (a^{3} * a^{2})(x * x^{2} * x)(y^{4}) 

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (a^{3+2})(x^{1+2+1})(y^4)

 \displaystyle (a^{5})(x^{4})(y^{4})

This is the same as:

\displaystyle a^{5}x^{4} y^{4}

Example Question #32 : How To Multiply Variables

Simplify:

\displaystyle xy(x^{2} + 2aby)

Possible Answers:

\displaystyle 3abx^{3}y^{2}

\displaystyle x^{2}y + 2abxy

\displaystyle 3abx^{3}y

\displaystyle 2x^{2}y + 4abxy

\displaystyle x^{3}y + 2abxy^{2}

Correct answer:

\displaystyle x^{3}y + 2abxy^{2}

Explanation:

\displaystyle xy(x^{2} + 2aby)

Distribute the outside term into the parentheses. Multiply each term in parentheses by \displaystyle xy:

\displaystyle (xy)(x^{2}) + (xy)(2aby)

Now, for each member, move the similar variables into separate groups. You can do this because of the associative rule for multiplication:

 \displaystyle (x*x^{2})(y) + (2)(a)(b)(x)(y*y)

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (x^{1+2})(y)+(2)(a)(b)(x)(y^{1+1})

\displaystyle (x^{3})(y) + (2)(a)(b)(x)(y^2)

This is the same as:

\displaystyle x^{3}y + 2abxy^{2}

Example Question #671 : Concepts

Simplify:

\displaystyle 2ab(5xy - 3ax + 4by)

Possible Answers:

\displaystyle 12abxy

\displaystyle 12a^{4}b^{4}x^{2}y^{2}

\displaystyle 6abxy - 6abx + 5aby

\displaystyle 10abxy - 6a^{2}bx + 8ab^{2}y

\displaystyle 7abxy – 5a^{2}bx + 6ab^{2}y

Correct answer:

\displaystyle 10abxy - 6a^{2}bx + 8ab^{2}y

Explanation:

\displaystyle 2ab(5xy - 3ax + 4by)

Distribute the outside term into the parentheses. Multiply each term in parentheses by \displaystyle 2ab:

 \displaystyle (2ab)(5xy) - (2ab)(3ax)+ (2ab)(4by)

Now, for each member, move the similar variables into separate groups. You can do this because of the associative rule for multiplication:

 \displaystyle (2*5)(abxy) - (2*3)(a*a)(bx)+ (2*4)(a)(b*b)(y)

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (10)(abxy)-(6)(a^{1+1})(bx)+(8)(a)(b^{1+1})(y)

 \displaystyle (10)(abxy) - (6)(a^{2})(bx)+ (2*4)(a)(b^{2})(y)

This is the same as:

\displaystyle 10abxy - 6a^{2}bx + 8ab^{2}y

Example Question #31 : Operations

Simplify:

\displaystyle 5bv(vx^{2} - 10bx - 5vb^{6})

Possible Answers:

\displaystyle 5bv^{2}x^{2} - 50b^{2}vx - 25b^{7}v^{2}

\displaystyle 5bv^{2}x^{2} + 50b^{2}v^{2}x – 25b^{7}

\displaystyle 10bv^{2}x^{2} – 50bv^{2}x – 10b^{5}v^{2}

\displaystyle 6bv^{2}x^{2} – 5b^{2}v^{2}x

\displaystyle 6bv^{2}x^{2} – 5b^{2}v^{2}x

Correct answer:

\displaystyle 5bv^{2}x^{2} - 50b^{2}vx - 25b^{7}v^{2}

Explanation:

\displaystyle 5bv(vx^{2} - 10bx - 5vb^{6})

Distribute the outside term into the parentheses. Multiply each term in parentheses by \displaystyle 5bv:

\displaystyle (5bv)(vx^{2}) - (5bv)(10bx) - (5bv)(5vb^{6}) 

Now, for each member, move the similar variables into separate groups. You can do this because of the associative rule for multiplication:

\displaystyle (5)(b)(v * v)(x^{2}) - (5 * 10)(b *b)(vx) - (5*5)(b *b^{6})(v*v)

When multiplying variables of the same type, you add their exponents together. This gets you:

\displaystyle (5)(b)(v^{1+1})(x^2)-(50)(b^{1+1})(vx)-(25)(b^{1+6})(v^{1+1})

 \displaystyle (5)(b)(v^{2})(x^{2}) - (50)(b^{2})(vx) - (25)(b^{7})(v^{2})

This is the same as:

\displaystyle 5bv^{2}x^{2} - 50b^{2}vx - 25b^{7}v^{2}

Example Question #2151 : Isee Middle Level (Grades 7 8) Mathematics Achievement

\displaystyle x^{2}* x^{5}=

Possible Answers:

\displaystyle x^{3}

\displaystyle 7x

Cannot be simplified further

\displaystyle x^{7}

\displaystyle 7

Correct answer:

\displaystyle x^{7}

Explanation:

To simplify, add the exponents:

\displaystyle x^{2}* x^{5}=x^{7}

Answer: \displaystyle x^{7}

Example Question #31 : Algebraic Concepts

\displaystyle y^{5}* y^{9}=

 

Possible Answers:

\displaystyle y^{14}

Cannot be simplified further

\displaystyle y^{59}

\displaystyle 14

\displaystyle y^{4}

Correct answer:

\displaystyle y^{14}

Explanation:

Because the two terms have the same base, they can be multiplied together by adding the exponents:

\displaystyle y^{5}* y^{9}=y^{14}

Answer: \displaystyle y^{14}

Example Question #2153 : Isee Middle Level (Grades 7 8) Mathematics Achievement

\displaystyle z^{3}* z^{6}=

Possible Answers:

\displaystyle z^{6}

\displaystyle z^{9}

\displaystyle z^{3}

Cannot be simplified further

\displaystyle 9z

Correct answer:

\displaystyle z^{9}

Explanation:

To simplify the expression, add the exponents and keep the base unchanged:

\displaystyle z^{3}* z^{6}=z^{9}

Answer: \displaystyle z^{9}

Example Question #61 : Algebra

\displaystyle w^{10}* w^{10}=

Possible Answers:

\displaystyle w^{20}

\displaystyle w^{100}

\displaystyle w+20

\displaystyle 20w

Cannot be simplified further

Correct answer:

\displaystyle w^{20}

Explanation:

To multiply two terms with the same base and different exponents, add the exponents and leave the base unchanged:

\displaystyle w^{10}* w^{10}=w^{20}

Answer: \displaystyle w^{20}

Learning Tools by Varsity Tutors