ISEE Lower Level Quantitative : Fractions

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : How To Add Fractions

Solve:

\displaystyle \frac{7}8{+\frac{2}{4}}

Possible Answers:

\displaystyle \frac{8}{11}

\displaystyle \frac{11}{16}

\displaystyle 1\frac{3}{8}

\displaystyle \frac{16}{11}

\displaystyle \frac{9}{12}

Correct answer:

\displaystyle 1\frac{3}{8}

Explanation:

\displaystyle \frac{7}8{+\frac{2}{4}}

In order to solve this problem, we first have to find common denominators. \displaystyle \frac{2}{4}\times\frac{2}{2}=\frac{4}{8}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{7}{8}+\frac{4}{8}=\frac{11}{8}

\displaystyle \frac{11}{8}=1\frac{3}{8} because \displaystyle 8 can go into \displaystyle 11 one time with \displaystyle 3 left over. 

Example Question #161 : Operations With Fractions And Whole Numbers

Solve:

\displaystyle \frac{3}{5}+\frac{1}3

Possible Answers:

\displaystyle \frac{14}{30}

\displaystyle \frac{1}{2}

\displaystyle \frac{4}{8}

\displaystyle \frac{13}{15}

\displaystyle \frac{14}{15}

Correct answer:

\displaystyle \frac{14}{15}

Explanation:

\displaystyle \frac{3}{5}+\frac{1}3

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{3}5{} \times\frac{3}{3}=\frac{9}{15}

\displaystyle \frac{1}{3}\times\frac{5}{5}=\frac{5}{15}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{9}{15}+\frac{5}{15}=\frac{14}{15}

Example Question #391 : Fractions

Solve:

\displaystyle \frac{2}{3}-\frac{3}{5}

 

Possible Answers:

\displaystyle \frac{1}{3}

\displaystyle \frac{1}{30}

\displaystyle \frac{1}{2}

\displaystyle \frac{1}{15}

\displaystyle \frac{5}{15}

Correct answer:

\displaystyle \frac{1}{15}

Explanation:

\displaystyle \frac{2}{3}-\frac{3}{5}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{2}{3}\times\frac{5}{5}=\frac{10}{15}

\displaystyle \frac{3}{5}\times \frac{3}{3}=\frac{9}{15}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{10}{15}-\frac{9}{15}=\frac{1}{15}

Example Question #811 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

Solve:

\displaystyle \frac{7}{8}-\frac{3}{16}

Possible Answers:

\displaystyle \frac{4}{16}

\displaystyle \frac{13}{16}

\displaystyle \frac{11}{16}

\displaystyle \frac{1}{4}

\displaystyle \frac{4}{8}

Correct answer:

\displaystyle \frac{11}{16}

Explanation:

\displaystyle \frac{7}{8}-\frac{3}{16}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{7}{8}\times\frac{2}{2}=\frac{14}{16}

Now that we have common denominators, we can subtract the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{14}{16}-\frac{3}{16}=\frac{11}{16}

Example Question #392 : Fractions

Solve the following: 

\displaystyle \small \frac{1}{2}\div\frac{2}{3}

Possible Answers:

\displaystyle \small \frac{3}{4}

\displaystyle \small \frac{3}2{}

\displaystyle \small \frac{1}{3}

\displaystyle \small \frac{5}{6}

\displaystyle \small \frac{1}{2}

Correct answer:

\displaystyle \small \frac{3}{4}

Explanation:

\displaystyle \small \frac{1}{2}\div\frac{2}{3}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{1}{2}\times\frac{3}{2}=\frac{3}{4}

Example Question #393 : Fractions

\displaystyle \small \frac{1}{7}\div\frac{2}{3}

Possible Answers:

\displaystyle \small \frac{3}{11}

\displaystyle \small \frac{14}{3}

\displaystyle \small \frac{2}{21}

\displaystyle \small \frac{21}{2}

\displaystyle \small \frac{3}{14}

Correct answer:

\displaystyle \small \frac{3}{14}

Explanation:

\displaystyle \small \frac{1}{7}\div\frac{2}{3}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{1}{7}\times\frac{3}{2}=\frac{3}{14}

Example Question #394 : Fractions

\displaystyle \small \frac{2}{9}\div\frac{1}{2}

Possible Answers:

\displaystyle \small \frac{1}{3}

\displaystyle \small \frac{9}{4}

\displaystyle \small \frac{18}{2}

\displaystyle \small \frac{2}{18}

\displaystyle \small \frac{4}{9}

Correct answer:

\displaystyle \small \frac{4}{9}

Explanation:

\displaystyle \small \frac{2}{9}\div\frac{1}{2}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{2}{9}\times\frac{2}{1}=\frac{4}{9}

Example Question #3073 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

\displaystyle \small \frac{3}{4}\div\frac{1}{5}

Possible Answers:

\displaystyle \small \frac{4}{15}

\displaystyle \small \frac{3}{20}

\displaystyle \small \frac{15}{4}

\displaystyle \small \frac{17}{7}

\displaystyle \small \frac{20}{3}

Correct answer:

\displaystyle \small \frac{15}{4}

Explanation:

\displaystyle \small \frac{3}{4}\div\frac{1}{5}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{3}{4}\times\frac{5}{1}=\frac{15}{4}

Example Question #395 : Fractions

\displaystyle \small \frac{3}{14}\div\frac{1}{3}

Possible Answers:

\displaystyle \small \frac{42}{3}

\displaystyle \small \frac{11}{9}

\displaystyle \small \frac{9}{11}

\displaystyle \small \frac{9}{14}

\displaystyle \small \frac{3}{42}

Correct answer:

\displaystyle \small \frac{9}{14}

Explanation:

\displaystyle \small \frac{3}{14}\div\frac{1}{3}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{3}{14}\times\frac{3}{1}=\frac{9}{14}

Example Question #3081 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

\displaystyle \small \frac{5}{6}\div\frac{1}{3}

Possible Answers:

\displaystyle \small \frac{5}{18}

\displaystyle \small \frac{18}{5}

\displaystyle \small \frac{7}{2}

\displaystyle \small \frac{15}{6}

\displaystyle \small \frac{6}{15}

Correct answer:

\displaystyle \small \frac{15}{6}

Explanation:

\displaystyle \small \frac{5}{6}\div\frac{1}{3}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{5}{6}\times\frac{3}{1}=\frac{15}{6}

Learning Tools by Varsity Tutors