ISEE Lower Level Quantitative : How to compare fractions

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #12 : How To Order Fractions From Least To Greatest Or From Greatest To Least

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{1}{8}

Possible Answers:

\displaystyle =

\displaystyle >

\displaystyle <

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{4}{4}=\frac{4}{8}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{4}{8}>\frac{1}{8}

Example Question #23 : Number & Operations: €”Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{3}{4} __________\displaystyle \frac{7}{8}

Possible Answers:

\displaystyle <

\displaystyle >

\displaystyle =

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{3}{4}\times\frac{2}{2}=\frac{6}{8}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{6}{8}< \frac{7}{8}

Example Question #23 : Number & Operations: €”Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{6}{12}

Possible Answers:

\displaystyle =

\displaystyle >

\displaystyle <

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{6}{6}=\frac{6}{12}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{6}{12}=\frac{6}{12}

Example Question #24 : Number & Operations: €”Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{5}{7} __________\displaystyle \frac{1}{3}

Possible Answers:

\displaystyle >

\displaystyle <

\displaystyle =

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{5}{7}\times\frac{3}{3}=\frac{15}{21}

\displaystyle \frac{1}{3}\times\frac{7}{7}=\frac{7}{21}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{15}{21}>\frac{7}{21}

Example Question #51 : Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{2}{3}__________\displaystyle \frac{4}{5}

Possible Answers:

\displaystyle >

\displaystyle =

\displaystyle <

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{2}{3}\times\frac{5}{5}=\frac{10}{15}

\displaystyle \frac{4}{5}\times\frac{3}{3}=\frac{12}{15}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{10}{15}< \frac{12}{15}

Example Question #2 : Compare Two Fractions With Different Numerators And Different Denominators: Ccss.Math.Content.4.Nf.A.2

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{5}{10} __________\displaystyle \frac{1}{2}

Possible Answers:

\displaystyle <

\displaystyle =

\displaystyle >

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{5}{5}=\frac{5}{10}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{5}{10}=\frac{5}{10}

Example Question #3 : How To Compare Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{7}{8} __________\displaystyle \frac{2}{5}

Possible Answers:

\displaystyle <

\displaystyle >

\displaystyle =

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{7}{8}\times\frac{5}{5}=\frac{35}{40}

\displaystyle \frac{2}{5}\times\frac{8}{8}=\frac{16}{40}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{35}{40}>\frac{16}{40}

Example Question #1 : How To Compare Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{3}{4}

Possible Answers:

\displaystyle =

\displaystyle >

\displaystyle <

Correct answer:

\displaystyle <

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{2}{2}=\frac{2}{4}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{2}{4}< \frac{3}{4}

Example Question #1 : How To Compare Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{6}{12} __________\displaystyle \frac{5}{10}

 

Possible Answers:

\displaystyle >

\displaystyle =

\displaystyle <

Correct answer:

\displaystyle =

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{6}{12}\times\frac{10}{10}=\frac{60}{120}

\displaystyle \frac{5}{10}\times\frac{12}{12}=\frac{60}{120}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{60}{120}=\frac{60}{120}

Example Question #31 : Number & Operations: €”Fractions

Select the symbol to correctly fill in the blank below. 

\displaystyle \frac{1}{2} __________\displaystyle \frac{1}{6}

Possible Answers:

\displaystyle <

\displaystyle =

\displaystyle >

Correct answer:

\displaystyle >

Explanation:

To compare fractions, we need to first make common denominators. 

\displaystyle \frac{1}{2}\times\frac{3}{3}=\frac{3}{6}

Now that we have common denominators, we can compare numerators. The fraction with the bigger numerator has the greater value. 

\displaystyle \frac{3}{6}>\frac{1}{6}

Learning Tools by Varsity Tutors